一、数学为人类提供精密思维的模式
数学是基础学科,是关于数量关系和空间形式的科学,即关于数与形的学问,而数与形可以说无所不在,这就是为什么数学正空前广泛地向几乎一切人类知识和活动领域渗透。除了数学知识的直接广泛的应用,数学对于人类社会还有一个重要的文化功能,就是培养发展人的思维能力特别是精密思维能力。
一个人不管将来从事何种职业,思维能力都可说是无形的财富,而这种能力的培养又不是一朝一夕之功,必须在长期的磨练之中。数学,正像人们常说的那样,是训练思维的体操。那么什么是数学思维或精密思维呢?数学思维包括很多方面。数学思维最基本的两大方面是“证”和“算”。“证”就是逻辑推理与演绎证明;“算”就是算法构造与计算,两者对人类精密思维的发展都不可缺。对“算”大家可能比较容易感受。在生活或工作中遇到问题常常会说需要“算一算”,数学家则更是追求解决问题的一般模式或者说一般算法。从简单的三角形面积算法到描述各种自然和社会现象的复杂方程解算,定量化的方法已经渗透到各行各业。而对“证”从几条不言自明的公理出发,通过逻辑的链条,推导出成百上千条定理。这种演绎论证的思维模式是古希腊欧几里得的《几何原本》首先开创树立的。《几何原本》依据柏拉图哲学、亚里士多德的逻辑学和欧几里得的精心构思,所表现出的已不仅是一种认识数学命题的真理特征,更为重要的是它借助数学表现了一种认识世界、表述世界的独特文化意义,并由此给人们提供一种思维的逻辑方式:从几个简单的原理出发,可以逻辑演绎出整个理论体系,进而表现这个理论所揭示的真理。一种数学方法能最终演化成为一种认识世界的逻辑思维方式,这不能不说是数学所能达到的最高的文化意义。其影响所及远远超出了数学乃至科学的领域,对人类社会的进步和发展有不可估量的作用。
二、数学是其它科学的工具和语言
德国大数学家,号称“数学王子”的高斯有句名言“数学是科学的皇后,数学也是科学的女仆”。前一句突出数学是精密思维的.典范,后一句则强调数学为其它科学服务,是其它科学的工具。非常形象和恰当地反映了数学的价值和作用。在传统分类中语言学属人文科学。但由于它的研究对象的特殊性,近年来它越来越向自然科学靠拢。因为它是一个内部规则严整的系统,所以应用数学便是自然的了。用数学方法研究语言现象,给语言以定量化与形式化的描述称为数理语言学。它既研究自然语言,也研究人工语言。例如计算机语言。数理语言学包含三个主要分支:统计语言学;代数语言学;算法语言学。统计语言学用统计方法处理语言资料,衡量各种语言的相关程度,比较作者的文体风格,确定不同时期的语言发展特征。代数语言学是借助数学和逻辑方法提出精确的数学模型,并把语言改造为现代科学的演绎系统,以便适用于计算机处理。算法语言学是借助图论的方法研究语言的各种层次,挖掘语言的潜在本质解决语言学中的难题。
三、数学是推动生产发展,影响人类物质生活方式的杠杆
数学从它萌芽之日起,就表现出与人类物质生产活动的紧密联系。
(一)数学与金融
华尔街的两次数学革命是指1952年马科维茨的证券组合选择理论和1973年布莱克――肖尔斯的期权定价理论。
马科维茨所解决的是如何给出最优的证券组合问题。即:对于每种证券,他用根据历史数据所计算的证券的隔天价格差的平均值来衡量证券的风险。而一组证券的收益率和风险也同样可根据历史数据来估计。把证券间的搭配比例(可正可负,表示有的是买入,有的是卖出)作为变量,就可提出一个在怎样的搭配比例下,对于固定的收益率使其风险最小的问题。马科维茨由此提出一个所谓有效证券组合前沿的概念。尽管马科维茨的研究在今天已被认为是金融经济学理论前驱工作,而获得1990年的诺贝尔经济学奖,但在当年他刚提出他的理论时,计算机才问世不久,从而使他的理论成为纸上谈兵,根本无法实际计算。今天的计算技术自然早已使马科维茨的思想得到完全的实现。