1 绪论 10-20
1.1 选题的背景和意义 10-13
1.1.1 直驱式永磁同步风力发电系统研究背景 10-12
1.1.2 直驱式永磁同步风力发电系统控制技术研究的意义 12-13
1.2 并网风力发电系统的主要类型 13-15
1.2.1 笼型异步风力发电系统 13-14
1.2.2 双馈异步风力发电系统 14-15
1.2.3 直驱式永磁同步风力发电系统 15
1.3 直驱式风力发电系统变桨距及低电压穿越控制技术研究现状 15-18
1.3.1 变桨距控制技术研究现状 15-16
1.3.2 低电压穿越技术研究现状 16-18
1.4 论文主要研究工作 18-20
2 直驱式永磁同步风力发电系统 20-39
2.1 风速模型 20-21
2.2 风力机数学模型 21-24
2.2.1 风力机的功率特性 21-22
2.2.2 风力机最大功率点跟踪(MPPT) 22-24
2.3 永磁同步电机数学模型及其控制策略 24-29
2.3.1 永磁同步电机的数学模型 24-27
2.3.2 永磁同步电机的控制策略 27-29
2.4 双PWM变流器原理及其控制策略 29-34
2.4.1 双PWM变流器的拓扑结构 29
2.4.2 机侧PWM变流器控制策略 29-30
2.4.3 网侧PWM变流器控制策略 30-34
2.5 直驱式永磁同步风力发电系统MATLAB仿真 34-38
2.6 本章小结 38-39
3 模糊神经网络变桨距控制 39-62
3.1 变桨距控制基本原理 39
3.2 模糊神经网络控制及其学习算法 39-49
3.2.1 模糊控制基本理论 40-43
3.2.2 人工神经网络(ANNs) 43-45
3.2.3 模糊神经网络控制 45-49
3.3 基于模糊神经网络的变桨距控制器设计 49-54
3.3.1 模糊神经网络变桨距控制系统结构 49
3.3.2 模糊神经网络结构设计 49-52
3.3.3 模糊神经网络的'训练 52-54
3.4 模糊神经网络变桨距控制器MATLAB仿真 54-61
3.4.1 恒定风速仿真 54-56
3.4.2 阶跃风速仿真 56-58
3.4.3 渐变风速仿真 58-59
3.4.4 自然风速仿真 59-61
3.5 本章小结 61-62
4 直驱式永磁同步风力发电系统低电压穿越技术研究 62-75
4.1 电网故障时直驱式风力发电系统暂态过程分析 62-64
4.2 低电压穿越Crowbar保护电路 64-70
4.2.1 基于耗能的Crowbar电路保护方案 65-67
4.2.2 基于储能的Crowbar电路保护方案 67-70
4.3 网侧变流器的无功支持策略 70
4.4 低电压穿越的辅助控制策略 70-71
4.4.1 桨距角控制 71
4.4.2 叶尖速比控制 71
4.5 低电压穿越综合控制策略 71-74
4.6 本章小结 74-75
5 总结与展望 75-77
5.1 总结 75
5.2 展望 75-77
致谢 77-78
参考文献 78-83
附录 83
目录 5-8
CONTENTS 8-11
摘要 11-14
ABSTRACT 14-17
第一章 绪论 18-30
1.1 课题背景与研究意义 18-19
1.2 国内外的研究现状及存在的主要问题 19-27
1.2.1 复合储能技术的提出 19-21
1.2.2 微电网复合储能关键技术研究进展及存在问题 21-27
1.3 本文的主要工作 27-30
第二章 多端口复合储能接入技术 30-52
2.1 微电网中复合储能接入形态 30-32
2.1.1 微电网对储能的应用要求 30
2.1.2 多端口复合储能的拓扑构建 30-32
2.1.3 多端口复合储能拓扑的统一形态 32
2.2 三端口复合储能的拓扑及定功率传输控制 32-43
2.2.1 三端口复合储能拓扑选择 33-34
2.2.2 三端口变换器的功率传输原理 34-38
2.2.3 三端口全桥复合储能变换器的数学模型及控制原理 38-40
2.2.4 异步占空比移相PWM定功率传输策略 40-43
2.3 实验研究 43-51
2.3.1 三绕组高频变压器设计 43-44
2.3.2 移相PWM控制的实现方法 44-45
2.3.3 三端口储能变换器定功率传输控制的实验研究 45-50
2.3.4 异步占空比移相PWM控制实验 50-51
2.4 本章小结 51-52
第三章 三相四开关容错型储能变换器及其控制技术 52-81
3.1 容错型三相四开关储能变换器 52-58