S4=A4·R4=(0.1, 0.3, 0.32, 0.18, 0.1)
S5=A5·R5=(0.1, 0.15, 0.23, 0.35, 0.17)
此Ri为一级评价指标Xi下二级指标的模糊评价矩阵。Si表示一级指标下的二级指标模糊矩阵合成运算所得的模糊子集。对于一级指标其模糊综合评价矩阵为:
R=
权重向量A=(0.2, 0.1, 0.3, 0.1, 0.3)
对该项目第一位专家的评定结果是:
Sz1=A·R=(0.1, 0.19, 0.23, 0.3, 0.17)
其他四位专家的评定结果如下:
Sz2=(0.13, 0.2, 0.22, 0.26, 0.18)
Sz3=(0.15, 0.21, 0.16, 0.3, 0.2)
Sz4=(0.08, 0.14, 0.24, 0.32, 0.21)
Sz5=(0.12, 0.2, 0.32, 0.26, 0.18)
假设这五位专家的水平相近,权重各占20%,对五位专家的评价结果加权平均得到该项目的评价结果如下:
S=A·R=(0.1, 0.19, 0.23, 0.29, 0.19)
评价结果表明:本工程的风险为小,较小,一般,较大,很大的概率分别是0.1,0.19,0.23,0.29,0.19。根据最大隶属度原则,本工程的决策风险为较大。
3. 结论
本文在项目决策阶段对可能存在的风险进行分析的基础上,对项目风险因素进行进行权重和等级划分,建立模糊评价模型,计算出各风险的隶属度作为投资决策的评价结果,为投资决策提供了很好的参考依据。
[1] 丁小英.建设工程决策阶段风险研究[D].南昌大学,2007
[2] 李亚春.苏丹大楼总承包项目投标决策阶段风险管理[D].清华大学,2008
[3] 吕超健.企业在工程实施过程中的管理[J].水运工程,2011(11):66-70