今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的.灯泡最划算?
我思索了一会儿,不慌不忙地说:可以这样算:
51=5305=150(小时)200小时150小时
还可以这样算:
51=52005=40(小时)30小时40小时
由这几步可得出结论,节能灯泡省钱。
妈妈又问我:很好。再想想看,还有没有别的办法来算?
我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:
5/200100=0.025100=2.5
1/301000.033100=3.3
3.32.5
或者这样算:
200/5100=40100=4000
30/1100=30100=3000
40003000
因此,也是节能灯泡便宜。。
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:生活处处有数学这个道理。
思考数学问题,除了认真细致外,我个人认为全面也很重要。
我曾看过这样一道数学题:某商场为庆祝元旦,推出如下酬宾方案:购物不满100元不优惠,在100——300元之间,所购物品打8折,购物满300元一律打7折。某人第一次购物用去90元,第二次购物用去238元,那么如果他一次买齐他所需要的商品,需要多少元?
我认为,当我们做这类题时,要考虑各种可能情况:90元有可能是只买了90元,没有打折,也有可能打折后再付90元;238元有可能是打8折后的238元,有可能是打7折后付的238元。根据这个思路,可得:
第一次买的商品价值为90元或90/0。8=112。5元;同理,第二次买的商品价值应为238/0。8=297。5元或238/0。7=340元。
综上所述,得知:两次购买商品的价格有4种情况:90元,297。5元;90元,340元;112。5元,297。5元;112。5元,340元。即两次购买的商品价值之和为:387。5元,430,410元或452。5元。可列出算式:
387。5×70%=271。5(元) 430×70%=301(元)
410×70%=287(元) 452。5×70%=316。5(元)
所以这题的答案有4种可能。但很多同学在解决这类问题时往往只看到其中一种情况而忽略其它,导致最终解答的不全面而留下缺憾。
在反思这道题时,我突然想到,如果题目给出条件如下:若此人一次买齐所需商品,将花去301元,那么他两次购物的商品价值分别为多少元?
在这种情况下,我想,我们可以设第一次所购买的商品价值为x元,第二次所购买的商品价值为y元,通过建立方程来解决问题,同样也会有几种情况需要我们全面考虑,方程如下:
100%·x=90 (当x<100) 解得x=90
80%·x=90 (当100 解得x=112。5
80%·y=238 (当100 解得y=297。5
70%·y=238 (当y>300) 解得y=340
而由题意,可得出等式:(x+y)·70%=301,可以看出只有x等于90,y等于340才能使等式成立,所以这个人两次购物的商品价值分别为90元和340元。
当然,有时仅仅是考虑全面还是不够的,我认为还要注意技巧,将”数“和”形“结合起来会大大的减少工作量。比如下面这道题:
求|x–1|+|x–2|+|x–3|+……+|x–20xx|的最小值。这题如果用分类法来全面考虑x值的取值范围,那真可谓工程浩大,但如果将其与”形“( 此处的”形“应当是指数轴了)结合起来,再根据绝对值的几何意义进行思考,那就简单多了。
因为绝对值的几何意义是一个数到原点的距离,而如果想表示一个数a到另一个数b的'距离,也可以运用绝对值,即|a–b|。所以,求|x–1|+|x–2|+|x–3|+……+|x–20xx|的最小值就是在数轴上找出表示x的点,使它到表示1、2、3……各点的距离之和最小,而不难看出,当像这样的式子共有n项且n为奇数时,x=(n+1)/2 , 所以当n=20xx时,x=1007,整个式子的值最小,其值为1006+1005+……+1+1+2+3+……+1006,根据高斯公式,不难算出该式值为1013042,这样就避免了全面讨论的麻烦。