变电站综合自动化是将变电站的二次设备(包括控制、信号、测量、保护、自动装置及远动装置等)应用计算机技术和现代通信技术,经过功能组合和优化设计,对变电站实施自动监视、测量、控制和协调,以及与调度通信等综合性的自动化系统。实现变电站综合自动化,可提高电网的安全、经济运行水平,减少基建投资,并为推广变电站无人值班提供了手段。计算机技术、信息技术和网络技术的迅速发展,带动了变电站综合自动化技术的进步。近年来,随着数字化电气量测系统(如光电式互感器或电子式互感器)、智能电气设备以及相关通信技术的发展,变电站综合自动化系统正朝着数字化方向迈进。变电站自动化系统在我国的应用已经取得了非常显著的效果,对提高电网的安全经济运行水平起到了重要作用。目前随着新技术的不断发展,数字化变电站正在兴起。与传统变电站相比,数字化变电站具有以下优势:减少二次接线,提升测量精度,提高信号传输的可靠性,避免电缆带来的电磁兼容、传输过电压和两点接地等问题,解决设备间的互操作问题,变电站的各种功能可共享统一的信息平台,避免设备重复,自动化运行和管理水平进一步提高。数字化变电站是变电站自动化技术的发展方向。
自从1987年清华大学研制成功第一套变电站综合自动化系统投运十多年来,由于技术水平的不断提高,体系结构也在不断改进。根据综合自动化系统设计思想和安装的物理位置的不同,综合自动化系统硬件结构形式可以分成很多种类。其结构形式有集中式、分布式、分散(层)分布式;从安装物理位置上来划分集中组屏、分层组屏和分散在一次设备间隔设备上安装等形式。典型的35kV变电站综合自动化系统采用分布式结构,装置分成管理层、变电站层和间隔层,利用现场总线技术信息上传,保护功能完全独立,远动与监控系统共用间隔层,利用现场总线技术信息,保护功能完全独立,远动与监控系统共用间隔层信息采集装置,达到了分布式RTU技术标准。间隔层按一次设备组织,一般按断路器的间隔划分,具有测量、控制和断电保护部分。间隔层本身是由各种不同的'单元装置组成,这些独立的单元装置直接通过总线接到站控层。站控层的主要功能就是作为数据集中处理和保护管理,担
负着上传下达的重要任务。管理层由一台或多台微机组成,这种微机操作简单方便,界面汉化,使运行值班人员极易掌握主要功能包括:数据处理、画面显示、打印和谐波分析计算等。对已建成的35kV变电站进行综合自动化改造时,宜采用集中组屏的分层分布式综合自动化系统,可以充分利用已有的二次电缆进行综合自动化改造,缩短施工周期,且综合自动化系统由于置于室内,运行环境稳定,维护方便。对新建35kV变电站综合自动化系统我们推荐采用分散分布式与集中组屏相结合的综合自动化系统,该结构采用“面向对象”,即面向电气一次回路或电气间隔的方法进行设计的,间隔层中各数据采集、监控单元和保护单元做在一起,并将这种机箱就地分散安装在开关柜上或其它一次设备附近。这样各间隔单元的二次设备相互独立,仅通过光纤或电缆网络由站控机对它们进行管理和交换信息,最大限度地压缩了二次设备及其繁杂的二次电缆,节省了投资,又可减少二次回路调试工作量。
对10kV及以下变电站实现综合自动化及无人值班已成为电网自动化的发展方向。其设备选型:(l)大型变压器宜选用低磁密、低损耗变压器;(2)开关选择应遵循“无油化”原则,首选SF6和真空开关;(3)直流系统所用交流电源采用双电源自动投切;直流系统一般采用智能高频开关电力操作电源系统,它具有交流过欠压报替、电池过电压、交流停电报警、自动均充等一系列功能,具有很高的可靠性,同时提供有通讯接口,便于远方监控直流系统的运行情况。(4)变电站自动化系统是此类变电站的中心系统,该系统集控制、保护、监视功能于一体,装置采用高性能处理器、高精度的A/D转换器,系统配里灵活,具有多种安装模式,即可采用分散安装,亦可进行集中组屏。通讯总线不但可以采用电气方式,也可采用抗干扰能力强的光纤方式。系统结构整体上分为三层:变电站层、网络通信层和间隔层。变电站层主耍由总控单元、监控主机;远动工作站及其他工作站组成,其他工作站可根据需要任意增减。变电站层可为调度、运行人员提供友好的人机文互窗口.以图形显示、语音报替、报表和信息打印的方式对现场状况进行实时监测,并可对一次设备实现远方调控。网络通信层采用标准规约,可与其它厂家的设备互联。间隔层采用工D系列硬件,可在恶劣环境下运行。软件系统,采用基于面向对象的设计原理。开放式模块化结构,可实现与通用应用,软件和用户程序想结合。保证了系统的通用性。实现35kV变电站无人值班,可以采用调度自动化系统与远动RTU来实现,也可以在变电站装备综合自动化系统。如果用远动装置来实现变电站无人值班,应是几个站同时实现才更具意义。布局紧凑,控制室小,不建生活设施,少站土地,节约了投资,是电网自动化发展的方向。