论文:数学学习中的联结及导向策略
【摘要】学习是一种联结。认为联结是从尝试错误刺激反应的发展到有意义的学习。通过对两种理论在实践中进行分析,其特质是先进与落后的区别。数学学习实际上是寻求“中间变量”,构建数学认知结构的过程。而目前教学中还众多停留在尝试错误的低级层次上,与培养发展型的高素质人才不相容。以数学知识结构为基础,以学生原有不同的的数学认知结构为出发点,以学生发展为目标达到构建学生的认知结构,作为促进学生有意义的联结的三大导向策略。
【关键词】数学学习 联结 认知结构 导向策略
一、引 言
全日制义务教育新《数学课程标准》明确指出:“有效的数学学习活动不能单纯地依赖模仿与记忆”,教师应当帮助学生“在自主探索和合作交流的过程中真正理解和掌握的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。”这实际上从一个角度要求数学教师,要重视学生的认知学习。但在实际教学中,还未重视认知结构的研究运用。尤其到了复习阶段,连续不断的向学生发放复习试卷和机械地向学生布置复习题给予强化,以达到反应结果。或者在平时教学中,让学生死记一些结论,不注重“有意义的学习”。学生的学习似乎还停留在“S—R”阶段。这种简单的操作方法在短时间内能使考试成绩上去,但代价是学生沉重的学习负担,并造成学生思维僵化,不利于培养“发展型”人才,与素质教育背道而驰。如学生对于绝对值概念,只知道│a│是a绝对值,而不明白它的真正内涵。没有通过学生生活中已建立起来的认知概念与数学内容的新认知结构进行联结。结果是造成对绝对值概念理解的是似而非。本文就数学学习的联结问题及导向策略上作一些探索。
二、关于联结理论
数学学习是什么过程?“人类的学习总是以一定的经验和知识为前提,是在联想的基础上,更好地理解和掌握新知的。”① 数学学习也不例外,这里的联想即为知识的联结过程。
关于联结,理论上的研究,目前有两大派别。一是以美国心理学家桑代克为代表的联结主义的行为学习理论。二是以美国心理学家布鲁纳和奥苏伯尔为代表的认知学派学习理论。桑代克的主要观点是,学习就是作尝试错误。如果把当今的学习刺激设为S,学习反应设为R,学习就是S—R的联结过程。它是在动物实验的基础上提出的,是一种盲目的尝试。通过不断尝试,出现错误,不断矫正,从中学会知识和技能。
而认知学派认为,学习就是知觉的重新组合,这种知觉经验变化过程不是简单的“S—R”过程,而是突然的“顿悟”,强调“情景的整体关系”。而以美国心理学家托而曼为代表的观点进一步认为,在 S与R之间应该有一个“中间变量”,即认知和目的,学习是期待,就是对环境的认知。因而,学习过程是一个S—O—R的过程。布鲁纳和奥苏伯尔还把它进行了发展为现代认知理论,认为“学习就是类目即及其编码系统的形成。”②它不仅批评S—R直接、机械的联结,而且提出学习存在一个认识过程,是认知结构的重新组合。强调原有的认知结构的作用,也强调学习材料本身的内在联系。把内在联系的材料和学生原有的.认知结构联结起来,新旧知识发生作用,新材料在学生的头脑中达成“内化”,学会了对“S—O—R”中的“O”的捕捉,成为真正的意义的联结,或者说学生对新材料有了深刻地理解和超越。
显然,在不同的时代,上述理论对数学教育都有积极的贡献。但时至今日,在数学教育中,我们不能不重视,数学学习重要的应该是认知学习,它是一个建立学生心理内部学习机制的过程。这里要明白三点:学生学习数学,一要利用学生原有的认知结构,二要重视学生一定年龄阶段的心理发展水平,三要充分考虑不直接参与的情感、意志、兴趣等问题。
三、数学学习的两种联结思想剖析
下面结合教学实践,说明“S—R”与认知结构连结之间的各自意义。