1.2合成化学催化材料
在各类物质的加工合成中,石墨烯和高分子复合可提高反应速率、降低活化能等,显著提升新型催化材料的性能。en等[2]所制得负载钌纳米粒子的氧化石墨烯-聚(N-乙烯基-2-吡咯烷酮)(Ru@GO-PVP)催化材料,转换频率(TOF)在室温下可达896.54h1;原高于70℃才分解的二甲基胺硼烷(DMAB),在此催化作用下25℃便可将活化能降到(11.45±2)kJ/mol,且发生强烈脱氢反应。而Karabog等制备的γ备氧化铝负载钯(Pd(0))纳米粒子(Pd(0)/Al2O3)经过也能使DMAB在常温下分解,但TOF只有73h1,且在使用三次后发生团聚。
2.可降解高分子材料的制备
2.1聚乳酸PLA
聚乳酸(PLA)又称为聚丙交酯,是以乳酸为单体聚合成的一类脂肪族聚酯[4]。其单体纯度分为光学纯和化学纯,L-乳酸光学纯度达到99%以上,同时,金属和其它杂质含量被控制在极低的水平才能够用来合成高质量的丙交酯单体,从而制备较高质量的聚乳酸,其制备过程涉及发酵、酯化、精制、脱水、催化剂开发、开环共聚等多个过程,放大过程需要解决的问题较多。
2.2热塑性生物降解塑料
聚己二酸/对苯二甲酸丁二醇酯(PBAT)是几类生物降解材料中最易实现产业化的技术,其工艺路线与PET接近。当前PBAT作为降解材料主要应用于包装膜及地膜产品,主要开发种类有:接枝增强母粒改性PBAT、PLA+PBAT+淀粉[5]、PLA+PBAT+碳酸钙、PBAT+滑石粉等产品。
2.3聚己内酯PCL
聚己内酯(PCL)作为一种线性脂肪族聚酯,由己内酯单体经一系列脱水、开环聚合等反应后形成的一种玻璃化转变温度较低为-60℃,熔点为60-63℃,分解温度在250℃以上,高于其他大多数聚酯,热稳定性、水解稳定性和低温特性优良,与多种聚合物的相容性很好,与多种材料的粘合力较强。经一系列改性后,可应用于地膜、包装薄膜、3D 打印、骨科/齿科固定材料,3-6个月可经生物降解路径,完全降解为二氧化碳和水。
3.可降解高分子材料的降解机理
3.1微生物对塑料的生物降解
细菌是自然界中最主要且数量最多的一类生物,具有降解各类塑料的能力(表S1)。从沿海地区塑料废物倾倒场收集的248个细菌菌株中,发现了140个可降解HDPE的菌株,其中芽孢杆菌属(Bacillussp.)和假单胞菌属(Pseudomonassp.)是最有效的降解细菌,可在一个月内使HDPE薄膜的质量损失最高达23.14%,同时使HDPE的羰基指数下降、乙烯基指数上升,这要归因于降解过程中氧气的参与使羰基被氧化为双键。然而,即使在无氧条件下,细菌也可以降解塑料,但降解速率有所降低。从污水处理厂污泥中分离出的假单胞菌属菌株MYK1在有氧和无氧条件下降解PLA的CO2产率分别是0.235和0.025(molCO2)(ngDNA)–1h–1,芽孢杆菌属菌株MYK2在有氧和无氧条件下降解PLA的CO2产率分别是0.248和0.097(molCO2)(ngDNA)–1h–1,两种细菌均可以造成PLA表面形态的变化,形成深约18μm、宽约23μm的孔洞。值得注意的是,由多种细菌组成的菌团对塑料的降解效果更明显。将多种降解效率较高的菌株混合培养可以提高塑料的生物降解效率,为如何有效处理环境中的塑料垃圾提供了新思路。
3.2热降解
热降解主要是通过热量使高分子材料结构中的链段发生断裂,从而降低其交联密度和强度,因此,能够进行热降解的高分子长链中应含有一定数量的可裂解基团。在回收过程中对其进行酸处理,使环氧树脂与碳纤维有效分离,得到可再次回收利用的碳纤维。
3.3不同降解途径对对生态系统的影响
塑料经过生物降解后可最终矿化为CO2等相对环境友好的物质,但若以伪降解(生物基填充物)途径将高分子塑料降解为尺寸减小的塑料碎片和低分子量聚合物,这些降解产物具有不同程度的生物毒性。塑料经伪降解后会产生尺寸减小的塑料碎片,并吸附环境中的有害物质(如重金属、持久性有机污染物等),通过自身摄食或食物链传递的方式进入动物体后,对动物的生长、发育和繁殖能力产生损害。
结语
综上所述,目前,对可降解高分子材料的研究主要集中于天然可降解高分子材料性能的优化,以及合成型可降解高分子材料的开发,并未对其降解速率、物理结构、化学性能等在降解过程中的变化及与其化学结构的关系进行深入研究。在可降解高分子材料未来的研究中,可降解高分子材料性能的优化、材料降解速率的可控调节将成为可降解高分子的重点发展方向。