3、继经典半导体的同质结、异质结之后,基于量子阱、量子线、量子点的器件设计、制造和集成技术在未来5~15年间,将在信息材料和元器件制造中占据主导地位,分子束外延 MBE 和金属有机化合物化学汽相外延 MOCVD 技术将得到进一步发展和更加广泛的应用。
4、高纯化学试剂和特种电子气体的纯度要求将分别达到lppb~0.1ppb和6N级以上,0.5μm以上的杂质颗粒必须控制在5个/毫升以下,金属杂质含量控制在ppt级,并将开发替代有毒气体的新品种电子气体。
参考文献:
[1]周立军 半导体材料的发展及现状 半导体情报 第38卷第1期 2001年2月
[2]葛生燕 刘辉 半导体材料的探析与运用 科技向导 2010年第5期(上)
[3]靳晓宇 半导体材料的应用与发展研究 大众商务 2009年6月(总第102期)
[4]王占国 半导体材料研究的新进展 半导体技术 第27卷第3期 2002年3月
[5] 王占国 纳米半导体材料的制备技术 微纳电子技术 2002年第1期 2002年2月
[6]郝斌 温凯 浅谈化合物半导体材料 电脑知识与技术 第6卷第5期 2010年 2月
[7]彭杰 浅析几种半导体材料的应用与发展 硅谷 2008年第10期 2008年 [9]梁俊吾 中国半导体的创新发展之路 中国工程院化工、冶金与材料工程学部第五届学术会议会议论文 2005年
一、半导体硅材料的现状
在当今全球超过2000亿美元的半导体市场中,95%以上的半导体器件和99%以上的集成电路(LSI)都是用高纯优质的硅抛光片和外延片制作的。在未来30-50年内,它仍将是LSI工业最基本和最重要的功能材料。半导体硅材料以丰富的资源、 优质的特性、日臻完善的工艺以及广泛的用途等综合优势而成为了当代电子工业中应用最多的半导体材料,它还是目前可获得的纯度最高的材料之一,其实验室纯度可达12 个“9”的本征级,工业化大生产也能达到7~11个“9”的高纯度。 由于它的优良性能,使其在射线探测器、整流器、集成电路(IC)、硅光电池、传感器等各类电子元件中占有极为重要的地位。同时, 由于它具有识别、存储、放大、开关和处理电讯号及能量转换的功能, 而使“半导体硅”实际上成了“微电子”和“现代化电子”的代名词。
半导体硅材料分为多晶硅、单晶硅、硅外延片以及非晶硅、浇注多晶硅、淀积和溅射非晶硅等。自从60年代被广泛应用于各类电子元器件以来,其用量平均大约以每年12-16%的速度增长。目前全世界每年消耗约18,000-25,000吨半导体级多晶硅,消耗6000-7000吨单晶硅。1999年,全世界硅片产量45亿平方英寸,2000 年其产量更高。目前全世界硅片销售金额约60-80亿美元。
现行多晶硅生产工艺主要有改良西门子法和硅烷热分解法。主要产品有棒状和粒状两种,主要用途是用作制备单晶硅以及太阳能电池等。生长单晶硅的工艺可分为区熔(FZ)和直拉(CZ)两种生长工艺。区熔单晶硅(FZ-Si) 主要用于制作电力电子器件(SR、SCR、GTO等)、射线探测器、高压大功率晶体管等;直拉单晶硅(CZ- Si) 主要用于制作LSI、晶体管、传感器及硅光电池等。硅外延片(EPl)是在单晶衬底片上,沿单晶的结晶方向生长一层导电类型、电阻率、厚度和晶格结构都符合特定器件要求的新单晶层。硅外延片主要用于制作CMOS电路,各类晶体管以及绝缘栅,双极晶体管(IGBT)等。非晶硅、浇注多晶硅、淀积和溅射非晶硅主要用作各种硅光电池等。
二、现代微电子工业对半导体硅材料的新要求
随着微电子工业飞速发展,除了本身对加工技术和加工设备的要求之外,同时对硅材料也提出了更新更高的要求。
1、对硅片表面附着粒子及微量杂质的要求
随着集成电路的集成度不断提高,其加工线宽也逐步缩小,因此,对硅片的加工、清洗、包装、储运等工作提出了更高的新要求。对于兆位级器件,0.10μm 的微粒都可能造成器件失效。亚微米级器件要求0.1μm的微粒降到 10个/片以下,同时要求各种金属杂质如Fe、Cu、Cr、Ni、A1、Na等, 都要求控制在目前分析技术的检测极限以下(约为1×1010原子/cm2)。
2、对硅片表面平整度、应力和机械强度的要求
硅片表面的局部平整度(SFQD)一般要求为设计线宽的2/3,以64M 存储器的加工线宽0.35μm为例,则要求硅片局部平整度在22mm2范围内为0.23μm,256M 电路的SFQD为0.17μm。同时,器件工艺还要求原始硅片的应力不能过分集中, 机械强度要高,使器件的稳定性和可靠性得到保证,但现在这方面硅材料尚未取得突破性进展,仍是以后研究的一个课题。