返回
首页 > 建筑学论文
24 页 客服微信号: bylw8com 客服 QQ: 3346581880

  2.3压磁材料

  土木工程领域中常规的压磁材料主要包括磁流变材料和磁致伸缩智能材料等。在外部磁场作用下,磁流变液悬浮体系的黏弹塑性会发生明显的变化,并且这种变化是可逆的。当外部磁场超过一定强度后,磁流变也会在极短的时间内变成固态,微观上表现为材料的分散相颗粒沿着磁场方向结成了链状结构。磁流变液介于液体与固体之间的这种独特的可变属性,以及对这种特性实施控制时耗能低、变化范围广、成本低等特性,使得磁流变液成为工程结构中作动器件的重要材料。当前,磁流变液主要被应用到元器件的控制桥路以及电源的高速开关等多个领域。且磁流变液在土木工程领域的应用主要集中在高层建筑、塔形建筑物、大跨框架和大跨度结构等。同时,有着高磁致伸缩效应的磁致伸缩智能材料,可以保证材料在机械与电磁直接进行可逆转换,因此具有广阔的应用前景。

  2.4碳纤维混凝土材料

  工程中混凝土的作用范围很广泛,因此对混凝土材料的改善也日益得到科研人员和工程从业者的支持,碳纤维混凝土的.产生正是这一领域发展的重要产物,在混凝土中掺加一定比例的碳纤维,可赋予混凝土材料以驱动功能和本征自感应。作为一种高强度、高弹性、大导电性的材料,碳纤维的加入能极大改善混凝土的强度与韧性,并且碳纤维之间会形成具有电阻的导电网络,在材料中起到阻隔导电的势垒,大大降低混凝土材料的电阻率,从而使得材料的导电能力得到数量级上的显著变化。不可忽视的是,这种混凝土的电导率与温度及应力的变化而表现出规律性的响应。同时,碳纤维混凝土在温度上表现为温度变化造成电阻的变化,并且材料内部的温差也会衍生出热电效应,在电场的作用下碳纤维混凝土会产生热变效应(热效应与变形)。碳纤维的含量和混凝土材料的结构共同影响材料的温敏性,当碳纤维的含量超过一定比例时,材料才有可能形成较为稳定的电动势。而碳纤维的掺入方式主要有两种:短切乱向分布和连续碳纤维束单向增强。采取不同的掺入方式能使得碳纤维混凝土的力学性能得到不同程度的强化与提高,工程实践表明:第一种方式更具有实用性。

  2.5压电材料

  具有压电效应的压电材料,经常被用作驱动元件和传感元件。当压电材料受到外部因素作用时会因为其自身发生变形而产生电势,而对材料再施加一定电压时又会改变材料的尺寸,压电效应由此而来。利用这一特点,压电材料可用作传感元件,通过压电元件的变化来判断元件所在位置处结构的变形量。与此同时,若能在压电元件外部形成电场,进而对压电元件内部的正负电子施加定向电场力,从而迫使元件发生变形,制成驱动元件。利用驱动元件,可改变材料的应力状态,甚至会影响材料的结构变形。压电材料的变化均在极短时间内完成,因此压电效应主要适用于对结构振动的控制上。

  3智能材料的未来发展

  3.1智能材料性能的发展

  智能材料有着独特的优越性能、广阔的发展前景,但是由于这一领域处于多学科交叉的研究前沿,所存在问题也亟待深究:

  (1)形状记忆合金的发现,改变了很多传统理念,胡克定律在合金材料这里基本上不再适用了,其所具有的智能功能使得传统的力学研究方法难以合理地解释其内在的机理,因此需要研究者另辟蹊径,从宏观与微观的角度重新去探究这种新材料的原理,建立一些实用性较强的理论和模型,以对具体的工程实际进行规范化的指导。同时,当前形状记忆合金还不完善,耗能高、功能单一等缺点使得其实用性不强,能够开发出低能耗、出力大、多功能的控制器则是未来研究的重要方向。

  (2)可以预见,压电材料将会成为工程结构中力学测量的首选感测元件,但是其存在的主要问题就是驱动力小,虽然已经有一些技术来弥补这一缺陷,但是对于大规模的土木工程结构而言,压电材料并不能直接应用,复杂的理论分析、高难度的集成技术研发,以及压电驱动器的开发技术和设计方法难度较大,都是制约压电材料未来发展的瓶颈,是研究的难点、热点和重点。

  (3)压磁材料所面临的问题是在长期的放置之后,会产生固体颗粒沉降,这种沉降对材料的稳定性有着怎样的影响效应也需要更深入的研究。并且,其温度适应范围较小,若能够拓宽温度作用范围,将使得压磁材料有着更广的发展前景。

首页 上一页 13 14 15 16 17 18 下一页 尾页

猜你喜欢

版权所有 Copyright©2006-2025 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com