返回
首页 > 医学
2 页 客服微信号: bylw8com 客服QQ:3346581880

医学图像领域中数字图像处理的应用论文

  在日常学习和工作生活中,大家都跟论文打过交道吧,论文是我们对某个问题进行深入研究的文章。那么,怎么去写论文呢?下面是小编帮大家整理的医学图像领域中数字图像处理的应用论文,希望对大家有所帮助。

医学图像领域中数字图像处理的应用论文

  1、前言

  计算机技术不断发展,硬件性能不断提升,软件效能不断优化,在其带动下,数字图像处理技术也得到了迅速的发展。以往难以解决的技术性瓶颈,而今已经可以轻而易举的突破。但是在一些专业性较强的领域,对于数字图像处理有着一些特殊的要求,很多通用的数字图像处理技术、方法,不能充分发挥其优势,甚至无法使用。本文针对数字图像去噪这一典型问题,在简单回顾相关通用数字图像处理技术发展的基础上,针对医学PET图像的特殊性,提出一些自己的看法及思考。

  虽然数字图像处理技术很早便被应用于医学相关领域,但是由于医学图像自身的分类多样、成像技术相对复杂,目前仍然有许多影响医学图像成像的诸多因素无法从理论层面解释,所以数字图像处理技术在医学领域的发展仍然相对滞后。

  2、数字图像处理技术的回顾

  数字图像处理作为一个学科,经过将近60年的发展,已经形成了完善的理论体系,并细化为多个专业方向。数字图像处理技术诞生之初,图像去噪就是其主要目标之一。在通用数字图像处理领域,常见的噪声主要包括乘性噪声和加性噪声。数字图像的噪声往往和图像的特征信息交织在一起,如何有效地区别并去除噪声,同时尽量保持图像的细节完整,是数字图像去除噪声要面对的难题[1].

  2.1空间域通过卷积处理图像噪声对获得的图像在空间域直接进行处理,往往采用卷积的数学形式。例如常见的均值滤波、中值滤波、为纳滤波等。常见的中值滤波可定义为:

  式子中{xij(i,j)∈I2}表示数字图像个点的灰度值。根据图像处理的实际需要,目前已经有许多成熟的滤波器可供选择。该类方法的优势在于数学结构相对简单,运算量较小,但是图像处理结果相对较差,容易造成图像细节丢失或者噪声抑制不足等结果。

  2.2频率域通过相应转换处理图像噪声将要处理的图像进行转换,根据实际情况选择适当的频带进行处理,然后经过反变换获得去噪后的图像[2].基于小波及其衍生分析方法的多尺度分析是该种方法中最具代表性的。因为该类方法理论较为成熟,数学机构灵活,所以至今仍然被学术界关注,并且每年都有一些新的方法被提出。虽然该类方法与前面提到的滤波器方法相比在运算复杂性上有着较大的劣势,但其在图像处理结果上的优势明显,并且随着计算机硬件效能的提升,在频率域的多尺度分析方法已经得到了较为普及的应用[3].

  传统的小波去噪方法(wavelet-baseddenoising):将含有噪声的图像进行小波变换,转化成小波系数Wf(j,k),选择合适的阈值Tf,根据一定的处理规则,对小波系数进行处理,把小波系数中噪声的部分去除,最后经过小波反变换得到去噪后的图像。

  根据实际的图像分析需求,在小波的基础上发展出了很多小波的衍生方法。这些方法又可以按照处理图像时基函数的变化与否分为自适应分析和非自适应分析。其中自适应分析比较常见的方法有:Brushlet、Wedgelet、Bandelet和Directionlet等。非自适应分析常见的方法有:Ridgelet、Curvelet、Contourlet、Shearlet、NSCT等[3].

  3、数字图像技术在医学图像领域的应用

  数字图像处理在医学领域有着广泛的应用,在这里只针对医疗中常见的大型设备来简单阐述。这里仅例举CT、MRI和PET(positronemissiontomography)三种具有代表性的影像设备来简单分析。

  CT、MRI和PET都属于临床常见的影像设备,虽然成像原理各不相同,但却使用许多相同的数字成像技术。CT主要是运用X光穿透被照体,检测X光的衰减,从而反推出被照体的衰减系数,根据已知的衰减系数对照表重建出被照体的解剖图像。MRI的结构成像主要检测静态磁场中外加射频脉冲对人体内氢质子的影响,从而得到对应的MR信号,重建出对应的解剖图像。PET主要是检测注入人体内的放射性核医药物在人体内代谢过程中发生“湮灭”放射出的γ射线,通过图像重建得到对应的功能性信息[4].

 1 2 下一页 尾页

猜你喜欢

版权所有 Copyright©2006-2024 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com