实验以磷酸盐为缓冲液,考察其 pH 值对 AA猝灭 GQDs 荧光的影响,结果。GQDs本身的荧光会受 pH 的影响。当 pH 在 4.0 ~7.5之间时,GQDs 的荧光随 pH 的升高而增强,但体系在 pH =4.5 时有最高的信噪比。因此,实验选择 pH =4.5 的磷酸盐缓冲液作为 AA 与 GQDs 的反应缓冲液。
3.6 线性范围和检出限。
在上述优化的条件下,实验对一系列不同浓度的 AA 进行了检测,实验结果。可以看出,随着 AA 浓度的增大,体系在 453nm 处的荧光强度逐渐降低,并且荧光强度值的比值 F0/ F( F0为 GQDs 的荧光强度,F 为加入 AA之后体系的荧光强度) 与 AA 的浓度在5.0 ×10- 6~7.5 × 10- 5mol / L 范围内呈现良好的线性关系,其线性方程为 F0/ F = 0.0537C + 0.7467,R =0.997 1( C 为 AA 的浓度,单位 10- 6mol / L) ,检测限( 3σ,σ = S0/ S,S0为空白溶液多次测量的标准偏差,S 为标准曲线的斜率) 为 1.0 ×10- 6mol / L.我们将本方法与其他检测 AA 的方法做了对比,见表 2.从表 2 中可以看出,该方法与其他方法相比具有较高的灵敏度。
为了考察该方法的精密度,实验将 7.5 ×10- 5mol / L AA 与 GQDs 反应进行了 11 次平行测定,得到荧光强度的相对标准偏差 ( RSD) 为3.4% .3.7 特异性考察。
为了考察所建立方法的特异性,实验选用几种糖类以及 HSA、尿素( Urea) 和几种氨基酸作为对照样品进行分析。GQDs 的浓度为 0.14 mg/mL,AA 的浓度为 7.5 × 10- 5mol / L,其他作为干扰物质的浓度均为 7.5 × 10- 5mol / L.实验结果。可以看出,只有 AA 的加入能引起信号的明显变化,其他物质均不存在干扰,特别是 DA、UA 这两种与 AA 有相似电化学性质的物质,也不存在干扰。因为在本实验中,AA 与GQDs 的反应介质为 pH = 4.5 的磷酸盐缓冲液,在这个 pH 值下,DA、UA 均不干扰 AA 的测定。
3.8 实际样品分析。
为了考察本研究所建立的方法是否可用于实际样品的检测,实验对人血清样品进行了分析。从医院取的血清样品按照 2.2 节方法进行处理,在稀释 50 倍后的血清中进行加标实验,实验结果如表 3 所示。从表中可以看到,人血清中 AA 的加标回收率在 95.2% ~115.3%范围内。
4、结论。
建立了一种基于 GQDs 荧光猝灭检测 AA的新方法,该方法操作简便,灵敏度高,检出限低至 1.0 ×10- 6mol / L,特异性强,一些糖类和氨基酸的存在均不干扰 AA 的测定,甚至是与 AA有相似电化学性质的 DA、UA 的存在对 AA 的检测也没有影响。本实验用到的所有原料都价廉易得且不需要任何修饰过程,GQDs 相对于其他量子点的合成更简单而且具有低毒性,有望应用于生物体内生物活性物质的检测。
参考文献:
[1]PONOMARENKO L A,SCHEDIN F,KATSNELSON M I,et al..Chaotic dirac billiard in graphene quantum dots [J].Science,2008,320( 5874) : 356-358.
[2]PAN D Y,ZHANG J C,LI Z,et al..Hydrothermal route for cutting graphene sheets into blue-luminescent graphenequantum dots [J].Adv.Mater.,2010,22( 6) : 734-738.
[3]CHENG H H,ZHAO Y,FAN Y Q,et al..Graphene-quantum-dot assembled nanotubes: a new platform for efficient Ra-man enhancement [J].ACS Nano,2012,6( 3) : 2237-2244.
[4]DONG Y Q,CHEN C Q,ZHENG X T,et al..One-step and high yield simultaneous preparation of single-and multi-layergraphene quantum dots from CX-72 carbon black [J].J.Mater.Chem.,2012,22( 18) : 8764-8766.
[5]SHEN J H,ZHU Y H,YANG X L,et al..Graphene quantum dots: emergent nanolights for bioimaging,sensors,cataly-sis and photovoltaic devices [J].Chem.Commun.,2012,48( 31) : 3686-3699.
[6]LU J,YEO P S E,GAN C K,et al..Transforming C60molecules into graphene quantum dots [J].Nat.Nanotechnol.,2011,6( 4) : 247-252.
[7]LIU R L,WU D Q,FENG X L,et al..Bottom-up fabrication of photoluminescent graphene quantum dots with uniformmorphology [J].J.Am.Chem.Soc.,2011,133( 39) : 15221-15223.
[8]NIU Z Q,CHEN J,HNG H H,et al..A leavening strategy to prepare reduced graphene oxide foams[J].Adv.Mater.,2012,24( 30) : 4144-4150.
[9]DONG Y Q,LI G L,ZHOU N N,et al..Graphene quantum dot as a green and facile sensor for free chlorine in drinkingwater [J].Anal.Chem.,2012,84( 19) : 8378-8382.
[10]BAI J M,ZHANG L,LIANG R P,et al..Graphene quantum dots combined with europium ions as photoluminescentprobes for phosphate sensing [J].Chem.Eur.J.,2013,19( 12) : 3822-3826.
[11]LIU J J,ZHANG X L,CONG Z X,et al..Glutathione-functionalized graphene quantum dots as selective fluorescentprobes for phosphate-containing metabolites [J].Nanoscale,2013,5( 5) : 1810-1815.