1前言
随着科学技术的快速发展,机械工程由传统的机械工程项机械电子工程方向转变,同时机械电子工程和人工智能的有效结合,不断的向自动化、智能化、数字化方向发展。机械电子工程与人工智能的整合,为社会生产力的发展带来了历史性的变革,对于推动党建社会的发展和进步具有非常重要的作用。因此,文章针对机械电子工程与人工智能整合思路构建的研究具有非常重要的现实意义。
2机械电子工程与人工智能的特点分析
2.1机械电子工程的特点分析
机械电子工程是指在信息技术快速发展的背景下,发展起来的以机械电子工程为核心的柔性制造系统,是以计算机技术、机械工程与电子工程为核心的综合性学科,机械电子工程的特点主要包括以下几个方面:(1)性能丰富,结构简单,机械电子产品与其他产品最大的区别在于不仅性能丰富,而且结构比较简单,传统的机械产品虽然具有较高的性能,但是外形比较笨重,因此机械电子工程在未来具有非常好的应用前景;(2)多技术融合的设计,电子机械工程是综合计算机技术、机械工程以及电子工程等多个相关技术融合设计的,工程师在进行机械电子工程设计的过程中,需要对各种技术、策略进行考虑,并将所有的技术、策略进行整合,以此完成相关产品的设计。
2.2人工智能的特点分析
人工智能是复杂、综合的学科,主要包括哲学、控制论、心理学、信息论以及计算机等,人工智能在社会生产与生活中发挥了非常重要的作用,具有非常广阔的应用前景。人工智能分为不同的发展阶段:(1)初级阶段,人工智能的研究方向主要集中在博弈、证明以及翻译等方面,此阶段在机器人、专家系统、自然语言理解、计算机视觉等方面获得了非常大的成就;(2)第二发展阶段,该阶段主要集中在商业化产品以及知识工程的应用领域,在智能机器、计算机视觉、基础常识、不确定推理以及分布式人工智能等方面获得了很大的成就,第二发展阶段相对平稳,但是平稳的发展阶段已经从原来的单个体向分布式方向发展。在当今社会,人工智能已经成为一种复杂、系统的技术,并且在人类生产和生活中发挥了至关重要的作用,作为一门使用的技术,在推动时代的发展中占据着非常重要的地位。
3机械电子工程和人工智能的整合思路分析
3.1机械电子工程与人工智能的关系分析
机械电子工程具有一定的不稳定性,描述机械电子系统的输入和输出的关系相对困难,传统的描述方式包括:学习并生成知识描述法、建设规则库方法以及数学方程推导法三种,由于传统的描述方法的严密性和精确度不高,并不能够满足曰益复杂系统的实际要求。人工智能在处理信息中具有很大的优势,能够有效解决传统机械电子系统不确定性、不稳定性、复杂性等问题。因此,机械电子工程与人工智能的整合已经成为一种必然趋势。机械电子工程中人工智能技术的应用存在一定的差异性,并不能够对网络系统进行有效的描述,并且系统资料库创建过程中需要进行严密的数学分析,在分析的过程中会出现许多问题,导致网络系统的建设存在许多问题,导致网络系统出现崩溃的现象,这对于机械电子工程系统的发展是非常不利的。人工智能技术创新的工程方式能够帮助机械电子工程系统创建系统资料库,机械电子工程和人工智能之间存在的密切关系,对现代科学技术进行了强化,对于促进机械电子工程的发展具有非常重要的作用。
3.2人工智能技术在机械电子工程中的应用分析人工智能技术在机械电子工程中的应用,创建了两大系统:其一,模糊推理系统,基于模糊集合理论的模糊推理系统,以模糊理念为设计工具,具有处理模糊信息的功能,模糊推理系统已经被广泛的推广和应用在数据处理、自动化控制等领域,并且获得了良好的效果,机械电子工程中的模糊推理系统,创建了模拟人脑的功能,进行语言信号的分析,通过网络结构接近一个连续函数,并运用域到域的映射方式规则的'储存信息,具有非常明确的物力意义,但是模糊推理系统连接不固定,并且计算量相对较小,应用范围相对有限;其二,神经网络系统,神经网络系统是人工智能的重要分支,神经网络以神经元的兴奋模式将信息分布在网络上,并进行动态的相互作用,人工神经网络系统的特点是对信息进行分布式的储存,并且能够进行动态的协同处理,神经网络系统不仅具有丰富的行为,而且结构非常简单,神经网络系统能够模拟大脑的结构,对数字信号进行分析,采用点到点的映射方式联系各个神经元,具有输入输出精度高,计算量大等特点,与模糊推理系统相比,神经网络系统的应用范围更广泛。创建基于模糊推理系统与神经网络系统的智能系统后,其在机械电子工程领域的应用越来越广泛。神经网络与模糊逻辑系统的融合通常采用以下两种方式:功能相似的融合,利用模糊变量隶属函数和神经网络中神经元的非线性映射部分功能相似的融合,对神经元输出特性进行调整,能够实现对隶属函数的优化与修正;利用神经网络与模糊系统算子相似性的融合,合理的选择算子,既能够保证足够的信息量,又能够简化运算;功能互补的融合,将神经网络的学习能力融于模糊系统的分布式储存规则中,能够有效的提高模糊系统的智能;将模糊系统的逻辑推理功能融入到神经网络系统中,能够有效的提高神经网络系统的逻辑推理能力。