返回
首页 > 数学毕业论文
23 页 客服微信号: bylw8com 客服 QQ: 3346581880

  1.2回顾性

  回顾性,来源于反思中“反”的本体意义,就是回顾已经发生的事情或过程,表现为回顾往事、回顾知识、回顾方法、回顾活动过程,体现在反思性的教学过程中,就是教师启发学生对于所学知识进行有目的地回忆,并从中确立与当前教学内容相关的联系.

  这一特征在教学中比较常见,如解题教学对题意的解读过程,教师就需要不断地引导学生对问题进行回顾性地分析,回顾条件中所涉及的知识,回顾与问题类似的解决方法,等等;在概念教学中,有些概念的学习必须进行回顾性的反思方能展开,如对于长方体的概念,学习者必须激活与之相关的一系列先前学习过的概念(如图1),并对现实生活中有长方体物体的再现回顾,从中找出长方体与平行六面体、直平行六面体的差异,然后再对长方体所涉及的诸定义性特征进行分析、合取,进而对长方体可能具有的性质进行猜测和推论,最后整合长方体的性质,形成长方体概念的图式.如果在教学过程中,教师没有启发学生完成如上的回顾反思,学习者就无法利用这些知识形成长方体的概念,

  图1长方体的概念“回顾”

  1.3内省性

  内省性,指在自己的心理内部对已有的思考进行反思,及自我反思、内部反思,体现在数学教学中,指学生对已有的学习结果和过程进行自我审查,发现错误加以改正,并从中总结经验教训.如教师对学生作业的批改过程中,可以有意识地“只批不改”,让学生对于错误结果进行自我反思,完成改正.

  1.4深究性

  深究性,借鉴反省思维中探究之意和教学的互动性,指的是深入思考过程,即不断地反思、反复反思、层层推进,强调了思考的“反复”性,表现在反思性教学中,就是对问题的解决进行持之以恒的探究.如“抛物线及其标准方程”第一课时的教学中,教师通过对动点轨迹的反复思考、不断反思,帮助学生“层层接近”抛物线的标准方程.

  【深究1】师:当e=l时,又是什么曲线呢?

  生:抛物线!

  【深究2]师:好,你怎么知道它就是抛物线,能说出理由吗?(学生满脸疑问地摇了摇头)那么在解析几何中,通常是用什么方法研究曲线的?

  生:坐标法,

  【深究3]师:好,那么首先画出定点F和直线,,对此大家想想看,F和,的位置关系有几种可能,应该怎样画?严格地说有两种可能:点在直线上,点在直线外.当F在直线上时,你能发现点的轨迹是什么?

  生:是过该点且垂直于已知直线,的直线.

  【深究4]生:x2-2py+p2=0。

  师:这是什么曲线的方程?

  生:抛物线,因为它可以化为y=

  ,就是初中常见的二次函数,所以就是抛物线的方程.

  【深究5]师:你能不能通过对已建坐标性的修改,让上面的抛物线也变得最简?

  生:把x轴向上平移

  个单位,也就是以垂线段的中点为原点.

  师:显然x2=2py(p0)这种方式更为简单,实际上它就是做抛物线的标准方程,叫做它的焦点,直l做它的准线,方程是y=

  看来坐标系可以自己选,那么能不能把),轴正向取向下,x轴正向取向左,应该也有同样的结论,所以请大家自己计算一下其它形式的抛物线的标准方程.

  在上述案例中,教师没有按照教科书直接给出标准方程所需要的坐标系,而是让学生对动点的轨迹进行不断地思考,如一开始就提出“这又是什么曲线呢?”到“你能发现点的轨迹是什么呢?”再到“这是什么曲线的方程呢?”都是同一个问题的反复思考,通过对这些思考的解答,就层层推进了认识,让学生感受到了所谓抛物线“标准”方程的特殊性,它的标准体现在选取了一个合适的坐标系,才使方程得以简化,这样就帮助学生理解了抛物线及其标准方程的概念和意义.

  1.5反诘性

  反诘性,借鉴哲学意义上的反思特点,表现在反思性教学过程中,就是一种“追问思想”的体现,即追寻学习过程中的漏洞,反问知识中的“陌生”信息,追问事实成立的依据,这有些与苏格拉底的对话法相似,“他教年轻人要在似乎无需证明的命题中找出矛盾,使他们困惑,引导他们反复思考、探索和质问,还不准他们闭而不答”.如上述案例中“你怎么知道它就是抛物线,能说明理由吗?”就是一种典型的追问,它引起学生对“动点轨迹”的直接反思性学习活动.


首页 上一页 5 6 7 8 9 10 下一页 尾页

猜你喜欢

54

版权所有 Copyright©2006-2025 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com