有关数学小故事
数学的结构
许多诸如数、函数、几何等的数学对象反应出了定义在其中连续运算或关系的内部结构。数学就研究这些结构的性质,例如:数论研究整数在算数运算下如何表示。此外,不同结构却有着相似的性质的事情时常发生,这使得通过进一步的抽象,然后通过对一类结构用公理描述他们的状态变得可能,需要研究的就是在所有的结构里找出满足这些公理的结构。
因此,我们可以学习群、环、域和其他的抽象系统。把这些研究(通过由代数运算定义的结构)可以组成抽象代数的领域。由于抽象代数具有极大的通用性,它时常可以被应用于一些似乎不相关的问题,例如一些古老的尺规作图的问题终于使用了伽罗瓦理论解决了,它涉及到域论和群论。
代数理论的另外一个例子是线性代数,它对其元素具有数量和方向性的向量空间做出了一般性的研究。这些现象表明了原来被认为不相关的几何和代数实际上具有强力的相关性。组合数学研究列举满足给定结构的数对象的方法。
有关数学小故事(精选34篇)
数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。下面是小编收集整理的有关数学小故事(精选34篇),欢迎大家借鉴与参考,希望对大家有所帮助。
小熊的妈妈生病了,为了能挣钱替妈妈治病,小熊每天天不亮就起床下河捕鱼,赶早市到菜市场卖鱼。
一天,小熊刚摆好鱼摊,狐狸、黑狗和老狼就来了。小熊见有顾客光临,急忙招呼:“买鱼吗,我这鱼刚捕来的,新鲜着呢!”狐狸边翻弄着鱼边问:“这么新鲜的鱼,多少钱一千克?”小熊满脸堆笑:“便宜了,四元一千克。”老狼摇摇头:“我老了,牙齿不行了,我只想买点鱼身。”小熊面露难色:“我把鱼身卖给你,鱼头、鱼尾卖给谁呢? ”狐狸甩甩尾巴道:“是呀,这剩下的谁也不愿意买,不过,狼大叔牙不好,也只能吃点鱼肉。这样吧,我和黑狗牙好,咱俩一个买鱼头,一个买鱼尾,不就既帮了狼大叔,又帮了你熊老弟了吗?” 小熊一听直拍手,但仍有点迟疑:"好倒好,可价钱怎么定?”狐狸眼珠一转,答道:“鱼身2元1千克,鱼头、鱼尾各1元1千克,不正好是4元1千克吗?”小熊在地上用小棍儿画了画,然后一拍大腿:“好,就这么办!”四人一齐动手,不一会儿就把鱼头、鱼尾、鱼身分好了,小熊一过秤,鱼身35千克70元;鱼头15千克15元,鱼尾10千克10元。老狼、狐狸和黑狗提着鱼,飞快地跑到林子里,把鱼头鱼身鱼尾配好,重新平分了……
小熊在回家的路上,边走边想:我60千克鱼按4元1千克应卖240元,可怎么现在只卖了95元……小熊怎么也理不出头绪来。
聪明的同学们, 你们知道这是怎么一回事吗?
从前,有一个老汉,临死前对三个儿子说:“我不行了。咱们家只有十七棵树,我死后,老大分二分之一,老二分三分之一,老三分九分之一,并且,每个树都不能砍倒。”说完这些,老汉死了。
兄弟三人看到死去的父亲,他们伤心极了,于是,三人商量着安葬了父亲,他们并且按照父亲的叮嘱,商量着分树,按老人的遗嘱分树,怎么分也分不开,兄弟三个一筹莫展,谁也没有办法。
不过,正在他们一筹莫展的.时候,一个聪明的小朋友从这里路过,轻轻松松,就将这个问题解决了,让我们一起看看他的解决方法吧。
小朋友和兄弟三个人说:“要想用现有的树,将其按照你们父亲的叮嘱分是分不开的,所以,我们需要借助下外人的树”,听到这里,兄弟三人还是很迷茫,于是,小朋友就给他们继续解答问题。
解答方法:
把邻居的树借来一棵加上来分,17+1=18(棵) 老大:18的二分之一是9(棵) 老二:18的三分之一是6(棵) 老三:18的九分之一是2(棵) 9+6+2正好17棵,最后把邻居家的树还给邻居。
一只蜗牛不留意掉进了一只枯井里,它趴在井底上哭起来,一只癞蛤蟆过来,翁声翁气的对蜗牛说:“别哭了,小兄弟,哭也没用,这井壁又高又滑,掉到那里只能在那里生活了。我已经在那里生活了许多年了。”