2、利用聚类技术处理入侵检测中的频繁误警
虽然入侵检测是重要的安全措施,然而它常常触发大量的'误警,使得安全管理员不堪重负,事实上,大量的误警是重复发生并且频繁发生的,可以利用聚类技术来寻找导致IDS产生大量误警的本质原因。
二、学位论文研究依据
学位论文的选题依据和研究意义,以及国内外研究现状和发展趋势
聚类分析研究已经有很长的历史,其重要性及其与其他研究方向的交叉特性已经得到了研究者的充分肯定。对聚类算法的研究必将推动相关学科向前发展。另外,聚类技术已经活跃在广泛的应用领域。作为与信息安全专业的交叉学科,近年来,聚类算法在入侵检测方面也得到大量的应用。然而,聚类算法虽取得了长足的发展,但仍有一些未解决的问题。同时,聚类算法在某些应用领域还没有充分的发挥作用,聚类技术和入侵检测技术结合得还不够完善。在这种背景下,我们认为,论文的选题是非常有意义的。
本论文研究的内容主要包括两个方面:聚类算法的研究以及聚类算法在入侵检测中的应用。下面从两个方面阐述国内外这两个方面的发展现状和趋势:
前人已经提出很多聚类算法,然而没有任何一种聚类算法可以普遍适用于揭示各种多维数据集所呈现出来的多种多样的结构,根据数据在聚类中的积聚规则以及应用这些规则的方法,可以将聚类算法分为以下几种:
1.划分聚类算法
划分聚类算法需要预先指定聚类数目或聚类中心,通过反复迭代运算,逐步降低目标函数的误差值,当目标函数收敛时,得到最终的聚类结果,划分聚类算法典型代表是k-means算法[1]和k-modoids算法。这些算法处理过程简单,运行效率好,但是存在对聚类数目的依赖性和退化性。迄今为止,许多聚类任务都选择这两个经典算法,针对k-means及k-modoids的固有弱点,也出现了的不少改进版本。
2.层次聚类算法
又称树聚类算法,它使用数据的联接规则,透过一种层次的架构方式,反复将数据进行分裂和聚合,以形成一个层次序列的聚类问题解。由于层次聚类算法的计算复杂性比较高,所以适合于小型数据集的聚类。20xx年,Gelbard等人有提出一种新的层次聚合算法,称为正二进制方法。该方法把待分类数据以正的二进制形式存储在二维矩阵中,他们认为,将原始数据转换成正二进制会改善聚类结果的正确率和聚类的鲁棒性,对于层次聚类算法尤其如此。Kumar等人[9]面向连续数据提出一种新的基于不可分辨粗聚合的层次聚类算法,既考虑了项的出现次序又考虑了集合内容,该算法能有效挖掘连续数据,并刻画类簇的主要特性。
返回硕士导航>>> 毕业论文开题报告之硕士 篇15
一、选题背景
随着社会的发展,人们深刻地认识到,想要一个国家向前不断的迈进,其源源不竭的动力就来源于一种精神,即创新精神。新一轮有关基础教育的课程改革中,我们国家教育部出台了有关以全面推进素质教育为目的的深化教育改革的文件,其明确地提出了要符合当今时代的发展要求,注重对学生个性的发展,以培养学生的创新性精神和实践性能力作为其重点内容。经过十年的实践,对课程的改革取得了明显的效果,并且为了贯彻落实《国家中长期教育改革和发展规划纲要(20xx-2020 年)》,适应新时期全面实施素质教育的要求,我们国家教育部专家对义务教育阶段各个学科的课程标准进行了修订和完善,新增了创新意识作为关键词,将创新意识的培养作为了现代化教育的基本任务。而研究性学习是我国基础教育课程的重大突破,是当前教育改革的重点和热点内容,也是当今国际上比较普遍认同和实施的一种新的学习方式,对于调动学生的积极主动性、培养学生的创新性精神和实践性能力,开发学生的内在潜力,具有重要的价值意义。