食品工业微生物谷氨酰胺转移酶运用
谷氨酰胺转胺酶(蛋白质-谷氨酸-γ谷氨酰胺转移酶E C 2.3.2.13)催化体外大多数食品蛋白质的交联反应,如:酪蛋白,大豆蛋白,肌球蛋白,肌动蛋白,谷蛋白,禽蛋蛋白等等.谷氨酰胺转胺酶(蛋白质-谷氨酸-γ谷氨酰胺转移酶E C 2.3.2.13)催化体外大多数食品蛋白质的交联反应,如:酪蛋白,大豆蛋白,肌球蛋白,肌动蛋白,谷蛋白,禽蛋蛋白等等.
摘要:谷氨酰胺转移酶能促进蛋白质分子间的交联作用,催化蛋白质之间异肽键的形成,对蛋白质溶解度、乳化能力、发泡性能和凝胶化作用等功能产生积极影响。众多食品工业加工过程中如奶酪生产、乳制品加工、肉类加工、焙烤制品及可食性膜的生产过程等都应用了这种酶的交联特性。微生物源性的谷氨酰胺转胺酶在生物技术生产中所需成本低,目前已经应用于几乎所有的工业领域。本文总体概述了谷氨酰胺转胺酶的特点及其在食品工业中的应用。
关键词:谷氨酰胺转移酶;蛋白质;交联作用;微生物;食品工业
1.谷氨酰胺转移酶可以催化谷氨酰胺残基中γ-甲酰胺基团(供体)与不同化合物的ε-胺类基团(酰胺残基的受体)之间异肽键的形成并诱导蛋白质之间的交联[1]。酶的这种催化作用会导致蛋白质理化性质的显著改变,如粘度、热稳定性、弹性和韧性等。研究证明,谷氨酰胺转移酶参与到许多生理过程中:血液凝结过程、抗菌免疫反应及光合作用等[2]。科学家们已经成功地从动植物体及微生物中分离出了谷氨酰胺转移酶。微生物来源的谷氨酰胺转移酶分子量较低,是一种单肽链酶,它由331个氨基酸组成,等电点为pH8.9,分子量约为38kDa。
2.谷氨酰胺转移酶的最适催化温度为45℃,pH5.5[3],该酶在50℃下30min就失去50%的酶活力,碳水化合物,如麦芽糊精、蔗糖、甘露糖、海藻糖和还原型谷胱甘肽(GSH)等,可以显著提高酶的热稳定性[4]。与动物源性的谷氨酰胺转移酶相比,微生物来源的谷氨酰胺转移酶不需要钙离子的激活作用,在实际利用酶制剂的过程中,这是一个非常令人满意的特征。另外,微生物源的谷氨酰胺转移酶在很大pH范围(4.5~8.0)内可以保持酶活力,可以简化某些加工过程,进而节省能源消耗,提高经济效益。另外得益于转基因技术的出现,利用基因的异位表达可以大大提高谷氨酰胺转移酶的产量,并且它对食物中的蛋白质具有不同的反应特性,这样的特点使得该酶成为改善食品中蛋白功能的有力工具。
一、谷氨酰胺转移酶的生物合成
1.1微生物谷氨酰胺转移酶
起初,谷氨酰胺转移酶大多来自豚鼠的肝脏,然而有限的来源和其相对昂贵的提取和纯化过程限制了谷氨酰胺转移酶在工业中的广泛使用。近期,有很多文章讨论了使用农业废料,以微生物合成方式作为合成谷氨酰胺转移酶的碳源来源的可能性。从已发表的文献中可知,发酵培养基可以占据微生物生产成本的近30%[5],如果可以从廉价的原材料如高粱秸秆等获得半纤维素水解物,那么以此来培养微生物获得微生物来源的谷氨酰胺酶的合成途径将会引起人们更大的兴趣。
1.2谷氨酰胺转移酶微生物发酵
在含有高粱秸秆水解物的培养基中,经过72h的培养时间,生物合成的谷氨酰胺转移酶的活性为0.34U/mL[6];当使用马铃薯酶解物作为培养基,另外添加酵母提取物、玉米浸出液和酪蛋白等成分培养后,酶活力可达1.12UA/mL[5];利用S.ladakanum合成谷氨酰胺转移酶时,甘蔗糖蜜和甘油的同时存在会产生协同效应[7];此外,当使用甘蔗糖蜜与甘油作为混合碳源时,测定的谷氨酰胺转移酶活力为0.72U/mL[8];Ryszka[9]研究了一种利用S.mobaraense菌株生物合成谷氨酰胺转移酶的最适培养基,以aminobac、玉米浆、酵母提取物作为氮源,以葡萄糖、蔗糖、淀粉和糊精作为源碳,pH范围为6.5~7.0,培养30h后测定谷氨酰胺转移酶活性为2.0U/mL。蛋白胨、酵母提取物、酪蛋白和尿素是合成谷氨酰胺转移酶的常用氮源。另外有文献报告了使用植物原料如大豆、大米、玉米和小麦面粉、玉米浆、小麦麦麸或麦芽提取物作为氮源的可能性[10]。Zhu[11]和Tramper对培养基成分进行了优化设计,发现在含有蛋白胨的培养基中添加额外的含氮化合物,如适当的氨基酸,会显著提高S.mobaraense中谷氨酰胺转移酶的产量。然而,为了实现经济性,工业生产中需要更便宜的原料作为底物。此外,培养基的配方也是至关重要的,因为组成成分会影响产物的浓度、产率和单位体积生产效率。