一项合格的工程建设必然要经历选址、勘察、设计等几个模块,在不同的工作模块中,由于其工程阶段的不同,工作目的的差异性,其工作的侧重点也不一样。地质工程是一个整体性的工程,其内部各个阶段间互有联系,密切相关,为了解决实际工作需要,工程地质力学的应用要因地制宜,灵活应用,切实解决地质工程中的问题。
(2)在地质工作中,避让是非常重要的原则,避开危险区域,是地质工程工作的重点。为了达到这一目的,必须首先明确哪些区域存在着危险状况,获得相关的地质资料后,再针对山体的稳定性进行判定,这种可靠性关系的判断与地质工程的顺利开展密切相关。建筑工程的顺利开展,需要建立在良好的地质条件基础上,如果将良好的地质条件误判为不稳定,将会造成地质工程工作资源的巨大浪费。
在地质工程实践中,有些地质问题依赖于工程师的工作经验,比如利用边坡稳定判断方法进行滑面参数的分析,这些参数的确定依赖于丰富的工作经验,在这个过程中,有些工作步骤需要利用有限元进行计算,这些可靠的地质工程分析方法都离不开大量的工程实践工作。
3地质体力学特性探测的一般方法
(1)在地质工作中,选址是一门重要的工作,在选址过程中,地质人员需要依据地质条件、环境等,进行工程建设可行性的判断,这需要进行工程建设地点、线路等的综合性分析,需要做好一系列的地质勘察工作,进行地质条件的深入了解,从而判断出工程建设状况。通过各种工程手段获得工作资料将作为下续工作的依据,一般来说,勘察过程中获得越多的资料,其工程设计的可靠性也就越大。在实际工作中,地质勘察的手段诸多,受到实际工程状况的影响,地质资料的获取比较困难,工程设计往往要进行多次设计。
为了实现地质工程造价的优化,必须最大程度地降低工程成本,而又获得最大的工程效益,在最优成本的前提下,获得丰富的地质材料。地质力学研究不仅仅需要获得给定条件的结果,也要最大程度创造地质工作的良好条件,这通常需要进行表面位移监测、波动等方法的应用,进行地质体力学特性的探测。这些方法具备良好的工程合理性。
上述方法运用得当,可以进行某工作区域某点特征的获取,而又不破坏地质体的原本形态,它的探测成本也是比较低的,目前来说,我国的地质勘察体系并不健全,缺乏丰富的理论体系支撑,计算机应用技术体系尚不健全。
(2)相比于工程结构,地质体的可容许变形更大,工程结构与地质体之间的相互作用比较复杂,远甚于单纯结构的变形分析,在这个过程中,为了给出合理性的工程设计,必须进行地质体初始状态、地应力场状况的深入分析,从而给出恰当的工程设计方法,进行工程涉及到优化。在地下工程工作中,岩体分类技术是常见的工程设计方法。
目前来说,我国的岩体分类技术理论体系尚不健全,通过对这种岩体分类问题的论证,能够满足我国复杂环境区域工作的要求,进行复杂性地质工程可行性的判断。工程岩体分类是比较笼统的,它主要适应于工程的初步设计阶段、工程预算阶段、招投标阶段,这种方法与一般工程的力学计算方法存在较大差异性,有些精密、复杂、大型的地质工程,需要精细化的岩体分类技术方法,这需要具体问题具体分析,提出适宜的工程方案,满足实际地质工作的需要。
(3)在地质工程工作中,力学、地学是密不可分的,这两者的结合都是为了创造更大的工程建设效益,这与力学基本理论体系的发展密切相关,需要满足工程建设工作的需求。通过对力学研究工程的应用,模拟复杂性的地质结构状况,通过科学性的建模,满足复杂的工程需要,这也需要工作人员的综合性判断,实现工作经验与计算机数值计算结果的结合,确保力学及地质学的相互渗透、相互结合,从而进一步解决工程常见问题。
(4)在实际工作中,地质工程师凭借丰富的工作经验,能够进行某地区地层的直接判断,从而有利于地质调查工作的开展,进一步节省工程成本,如果不能确保地质判断的准确性,将会导致工程实践的失败,也不能获得正确的力学分析结果。为了满足实际地质调查工作的要求,需要进行力学分析手段的补充,进行地质体力学参数的获取。