(3)计算过程,中间结果可要可不要的,不要列出。
(4)设法算出合理的数值结果。
5、模型检验、结果分析
(1) 最终数值结果的正确性或合理性是第一位的 ;
(2)对数值结果或模拟结果进行必要的检验。
当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进;
(3)题目中要求回答的问题,数值结果,结论等,须一一列出;
(4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据;
(5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页)
▲数值结果表示:精心设计表格;可能的话,用图形图表形式。
▲求解方案,用图示更好
(6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。
6、模型评价
优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。
7、参考文献
限于公开发表的文章、文献资料或网页
规范格式:
[1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社,1999。
[2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20—23。
8、附录
详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。
9、关于写答卷前的思考和工作规划
答卷需要回答哪几个问题——建模需要解决哪几个问题 问题以怎样的方式回答——结果以怎样的形式表示 每个问题要列出哪些关键数据——建模要计算哪些关键数据 每个量,列出一组还是多组数——要计算一组还是多组数……
10、答卷要求的原理
▲ 准确——科学性 ▲ 条理——逻辑性 ▲ 简洁——数学美 ▲ 创新——研究、应用目标之一,人才培养需要 ▲ 实用——建模。实际问题要求。
四、建模理念
1、应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。
2、数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。
3、创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新
五、格式要求
参赛论文写作格式
论文题目(三号黑体,居中)
一级标题(四号黑体,居中)
论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出2。5厘米的页边距。
首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。
第四页开始论文正文
正文应包括以下八个部分:
问题提出: 叙述问题内容及意义;
基本假设: 写出问题的`合理假设;
建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想;
模型求解: 求解、算法的主要步骤;
结果分析与检验:(含误差分析);
模型评价: 优缺点及改进意见;
参考文献: 限公开发表文献,指明出处;
参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中
书籍的表述方式为:
[编号] 作者,书名,出版地:出版社,出版年
参考文献中期刊杂志论文的表述方式为:
[编号] 作者,论文名,杂志名,卷期号:出版年
参考文献中网上资源的表述方式为:
[编号] 作者,资源标题,网址,访问时间(年月日)