严谨、统一是数学美的重要特征。数学将许多不同对象或统一对象的不同组成部分之间所存在的共同规律在严谨的前提下统一起来。
4、奇异、突变
奇异美是与统一美结合起来的新层次的更高的统一。奇异、突变是有“出乎意料”“令人震惊”的数学美。这在中学解题中经常碰到。例如:
(1)在等差数列{an}中,已知a6+a9+a12+a15=30,求S20。
探索思路:由求和公式想到,求S20需要先求出首项a1与公差d,已知式中的各项均可用a1与d表示出来,但这得到的是关于a1,d的一个二元一次方程,无法确定a1、d,这似乎“山穷水复疑无路”了。这时突然注意到已知式中的下标:在前20项中,a6与a15,a9与a12不正是与首末两端等距离的两项吗?a6+a15=a9+a12=15,从而有S20=10×15=150,这又变成了“柳暗花明又一村”了。这就是“出人意料”“令人震惊”的美,解这样的题无疑是一种极大的精神享受。
下:
数。这里,用反证法去证,无疑是奇异的美。
(3)已知A(-7,0),B(7,0),C(2,-12)三点,如果一个双曲线以C为一个焦点,并且双曲线的两支分别过A、B两点,求这双曲线的另一个焦点的轨迹。
探索思路:这个题如果用求轨迹的一般方式去作将是很难做出来的,但若根据题中的条件,设另一个焦点为F(x,y)。由双曲线定义,有:|AC|-|AF|=-(|BC|-|BF|),即:|BF|+|AF|=28。
是由条件出乎意料得出的结果,是一种奇异的美。
对于数学,不能要求它能象音乐和美术那样使人灵感焕发,一见钟情,因为连最直观的欧氏几何对于一些人已经是一道不易跨越的高栏,而愈来愈加抽象的现代数学,无论用什么比喻,都不能把某些艰涩难懂的数学概念带入一般人的经验范围。但是,随着数学知识的丰富,数学素养的提高,生活经验的积累,一定会有愈来愈多的人感受到数学美。