3.3光网络智能化
我国的光纤通信素以传输为主线,伴随现代计算机技术的发展进步,其在网络通信当中所起到的作用将会越来越重要以及明显,因此必须要实现光纤网络通信技术的智能化,提高网络通信技术的实际应用高度。针对现代光网络技术而言,实现光网络智能化,其关键在于将自动连接控制技术以及自动发现技术应用到其中,辅以通信网络系统的自我保护与恢复功能,以期全面实现光纤通信传输技术的高度智能化。实现光网络智能化,核心思路在于提高 固定栅格频谱的利用率,在传统的WDM网络的固定栅格之下,各种速率的光通道支撑为50GHz的频谱间隔,针对100Gb/s的通道而言,这样的频谱间隔是合理的,但是对于80Gb/s以下的通道而言,则会造成固定栅格频谱的浪费。此外还要建立完善的波长通道,实现光信道的动态调整,开放接口,实现资源云化,打造灵活的弹性光路。
3.4多波长通道
在光纤通信传输技术当中,存在一种衍生技术“波分复用技术”,其核心作用在于对光波通信的'信息容量实现有效的拓展,进而实现时分与空分多址复用的目的。其中,空分复用需要依靠多根光纤进行信号的传输,与单根光纤复用相比较,空分复用还需要借助频分或者是码分复用来实现。在现代商业当中,频分复用的应用范围比较广,针对传统的G.653光纤而言,采用色散调节技术确实可以提高其传输速度以及拓展其信息容量,但是在正常的使用过程当中非常容易出现FWM(四波混合)的问题,这是光纤放大器不合理使用而直接导致的结果。FWM的原理可细分为三点:一是后向参量放大和振荡、二是三个泵浦场的不规则作用情况、三是入射光中的某一个波长上的光改变了光纤的折射率。FWM所带来的负面影响主要是衍生出新的波长,进而导致串音干扰,削弱传输信号,不利于波分复合技术的实际应用。鉴于此,需要研发可抗御FWM影响,并且集超大容量与超快速度等优点于一身的新型光纤,以提高波分复用技术在光纤通信传输的应用水平。研究表明,采用G.652光纤可抗御FWM所带来的负面影响,但是鉴于其存在色散的问题,因此需要加强色散补偿,这是现阶段业内抗御FWM影响的主要技术方向。
四、结语
综上所述,现阶段光纤通信传输技术虽然取得了长足的进步,但是依旧存在着部分的不足。相关的下从业人员需要在明确其不足的基础上,立足于集成光器件、全光网络、光网络智能化、多波长通道等方面,切实提高光纤通信传输技术的应用水平。