e1、e2---A、B工作面的瓦斯体积分数;
a3、b3、c3、d3---未知量系数:
f1、f2---A、B工作面的瓦斯绝对涌出量。
3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。
3.2模型的转型及其离散化
因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】
在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。
依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。
3.3模型的应用效果及降低瓦斯体积分数的措施
以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。
综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。
4结语
应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。
数学核心素养是数学课程的基本理念和总体目标的体现,可以有效地指导数学教学实践。《普通高中数学课程标准(实验)》修订稿提出了数学学科的六种核心素养,即数学抽象、直观想象、数学建模、逻辑推理、数学运算和数据分析。其中,数学建模是六大数学核心素养之一。提升数学核心素养,要求数学教师在课堂教学中强化学生的建模意识。教师在教学中通过设置数学建模活动,培养学生的建模能力。
一、数学建模的含义
数学建模是将实际问题中的因素进行简化,抽象变成数学中的参数和变量,运用数学理论进行求解和验证,并确定最终是否能够用于解决问题的多次循环。数学建模能力包括转化能力、数学知识应用能力、创造力和沟通与合作能力。
二、数学建模能力的培养与强化
1.精心设计导学案,引导学生通过自主探究进行建模
在新授课前,教师设计前置性学习导学案,为学生扫除知识性和方向性的障碍。通过导学案,引导学生去探究问题的关键,对模型的构建先有一个初步的`自主学习过程。通过自主学习探究,让学生充分暴露问题,提高模型教学的针对性。在前置性学习导学案设计的问题的启发与引导下,学生会逐步学习、研究和应用数学模型,形成解决问题的新方法,强化建模意识和参与实践的意识。例如,教师在引导学生构建关于测量类模型时,设计的导学案应提醒学生对测量物体进行抽象化理解,并掌握基本常识。教师应鼓励学生采用多种不同的测量方式,分析并优化所得数据。通过引导学生自主探究,让学生探索并归纳不同条件下的模型建立的方法,培养学生的建模维能力。