(4)营造数学应用意识的数学实验氛围。利用数学软件,通过寥寥数行代码解决曾经无从下手的复杂问题,必会吸引学生从耗费时间的复杂计算转移到数学建模思想、数学方法的理解和应用,培养以数学和计算机分析和解决实际问题的能力,提高数学应用意识。
(5)指导学生参加全国大学生数学建模竞赛。历届数学建模竞赛从内容到形式,都是一场与真实工作环境接近的真刀真枪的历练,要求学生团队综合运用数学及其他学科知识、使用计算机技术通过数学建模来分析、解决现实问题。从“乘公交,看奥运”、“世博会影响力的定量评估”到“SARS的传播”、“饮酒驾车”,这些开放、挑战性问题,必然会提高学生的洞察力、想象力、创造力和协作精神。
四、数学建模在高等数学教学中的实践效果
自20xx伊始,将数学建模和数学实验引入高职数学课程教学中以来,学生主动学习意愿增强,学习效果显著提升。效果主要表现实际问题求解的多样性和开放性使得学生思维得以激活和解放,解题的自由使得互联网应用达到最优化。学院连续多年组织学生参加北京市高职高专大学生数学竞赛多次获得一、二、三等奖,在全国大学生数学建模竞赛中获得多项北京市一等奖,近两年获得国家二等奖2项、国家一等奖1项的佳绩。经过共同努力,应用数学基础获批为国家精品资源共享课。需要强调三点:首先,案例教学中要科学合理的训练学生的“双向翻译”能力,要培养学生应用数学语言把实际问题翻译为明确的数学问题,再把数学问题的解翻译成常人能理解的语言。其次,所有教学活动要以学生为中心,并且离不开教师煞费苦心精心设计的教学活动,因为数学建模、指导数学实验和辅导学生参加竞赛需要教师掌握算法、优化、统计、数学软件、计算机编程等综合能力,因而教师尤为关键。再者,学院领导对数学建模、数学实验在人才培养过程中的重要性要有清晰充分的认识,才会有力度的支持数学教学改革。
五、结语
将数学建模思想和方法融入高职数学课程教学是一种先进的教育教学改革理念,是提升高职数学教学品质的关键,需要广大教师踏踏实实的钻研和工作,真正讲好每一个案例,为培养具备数学应用意识的高规格人才而努力。
一、高数教学里的量化指标与线性关系
要将数学建模应用于高等数学教学中,首先,要取得建模所需的一些参数;其次,要分析出各个参数之间的线性关系;然后,才能建立模型的计算公式,并进行测算、校验及修正。
在选取参数之前,我们先要明确我们建立模型的目的。在这里,我们建立数学模型的目的是:建立课堂上的教学质量,与期中期末考试之间的某种联系,从而达到提升考试成绩的目的。
经验表明,教学质量好,学生的整体成绩也会好。如果学生的整体成绩都不尽如人意,那么在教学的过程中就可能出现了问题。如何从细节上及早分析出教学的过程是否出现了问题,将对考试的成绩造成怎样的影响,正是我们建立这一数学模型的`目的所在。
二、分析数学建模中的相关参数
我们分析一下在数学模型中将用到的一些量化指标,也就是模型的参数:
(1)学生的上课签到情况;
(2)课堂问答的情况;
(3)作业的情况;
(4)测验的成绩。
这四项参数,与考试的成绩之间,有着某些必然的联系。下面我们对这些参数进行逐项分析:
1.学生上课签到情况。如果签到率达到100%,那么授课是有保障的。反之,如果降为0(当然这是一种极端的情况),那么除非学生自学成才了,否则教学质量将是没有保障的。所以,课堂上的签到情况,与成绩之间,有一个乘数关系。
2.课堂问答。课堂问答,包括学生的主动提问,教师的例行提问以及下课后的一些补充问答。课堂问答的多少,与两方面有关系。第一,是学生的学习积极性。如果学生对学习没有积极性,那么,主动提问的情况就不多。第二,是教学内容的难易度。如果教学的内容很简单,一般学生的提问也相对会减少。所以,对于课堂提问的情况,要一分为二地分析。当课堂提问的数量上升时,既有可能是学生的学习积极性上升,也可能是教学内容相对有难度。学习积极性上升,则成绩有可能提高。但如果是教学内容有难度,则成绩反而有可能下降。因此,对于课堂问答的情况,除了进行纵向对比外,还需进行历史同期数据的横向对比。