基本运算的运用,并要多做练习。在此特别强调一点:深入地理解和掌握离散数学的基本概念、基本定理和结论,是学好离散数学的重要前提之一。所以,同学们要准确、全面、完整地记忆和理解所有这些基本定义和定理。 4。 内在联系性 离散数学的三大体系虽然来自于不同的学科,但是这三大体系前后贯通,形成一个有机的整体。通过认真的分析可寻找出三大部分之间知识的内在联系性和规律性。如:集合论、函数、关系和图论,其解题思路和证明方法均有相同或相似之处。5。知识点集中,概念和定理多:《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
二、对离散数学的建议
数理逻辑、集合论、代数系统、图论是《离散数学》在教学过程中,应穿插介绍一些知识点在计算机科学中的应用,将之与离散数学理论结合介绍给学生,使学生重视这一课程的学习,产生学习兴趣,主动地进行学习。这将有利于学生理解理论知识,又为后续课程的学习奠定基础。 在学习《离 散数学》的过程,对概念的理解是学习的重中之重。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),往往不能在脑海中建立起它们与现实世界中客观事物的联系。这是《离散数学》学习过程中要面临的第一个
困难,觉得不容易进入学习的状态。因此一开始必须准确、 全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能够适应,并为后续学习打下良好的基础。 离散数学中一些概念很容易混淆,个人比较喜欢总结一些东西的共同和不同,虽然有时是两个不相干的概念从而导致自己陷入牛角尖。但从中确实收获不少。在教学过程中,如能充分比较的方法,讲清它们的共同点和不同点,能让我们加深对概念的理解,从而避免判断的错误。
总结
在一学期的学习中,离散基本知识已经掌握,但是深入的学习还是有些困难,老师的指导已经足够明确,在接下来的学习中主要靠自己的参悟和不懈努力去上更高的一层楼,谢谢老师。