中国古代及近现代数学发展史探究
在平平淡淡的日常中,大家都接触过论文吧,论文是我们对某个问题进行深入研究的文章。还是对论文一筹莫展吗?下面是小编为大家整理的中国古代及近现代数学发展史探究的论文相关内容,欢迎大家分享。
中华民族是一个具有悠久历史和灿烂文化的民族,在灿烂的文化瑰宝中数学在世界数学发展史中也同样具有许多耀眼的光环。研究中国的数学发展历程有着重要的现实意义。
1、中国古代数学的发展史
1。1起源与早期发展。数学是研究数和形的科学,是中国古代科学中一门重要的学科。中国数学发展的萌芽期可以追溯到先秦时期,最早的记数法在殷墟出土的甲骨文卜辞中可以找到记数的文字。如独立的记数符号一到十,百、千、万,最大的数字为三万,还有十进制的记数法。
在春秋时期出现中国最古老的计算工具———算筹,使用算筹进行计算称为筹算,中国古代数学的最大特点就是建立在筹算基础之上。古代的算筹多为竹子制成的同样长短和粗细的小棍子,用算筹记数有纵、横两种方式,个位用纵式,十位用横式,以此类推,并以空位表示零。这与西方及阿拉伯数学是明显不同的。
在几何学方面,在《史记·夏本记》中记录到夏禹治水时已使用了规、矩、准、绳等作图和测量工具,勾股定理中的“勾三股四弦五”已被发现。
1。2中国数学体系的形成与奠基时期。这一时期包括秦汉、魏晋、南北朝,共400年间的数学发展历史。中国古代的数学体系形成在秦汉时期,随着数学知识的不断系统化、理论化,相应的数学专书也陆续出现,如西汉初的《算数书》、西汉末年的《周髀算经》、东汉初年的《九章算术》以及南北朝时期的'《孙子算经》、《夏侯阳算经》、《张丘建算经》等一系列算学着作。
《周髀算经》编纂于西汉末年,提出勾股定理的特例及普遍形式以及测太阳高、远的陈子测日法;《九章算术》成书于东汉初年,以问题形式编写,分属于方田、粟米、衰分、少广、商功、均输、盈不足、方程和勾股九章,特点在于注重理论联系实际,形成了以筹算为中心的数学体系。
中国数学在魏晋时期有了较大的发展,其中赵爽和刘徽的工作被认为是中国古代数学理论体系的开端。赵爽证明了数学定理和公式,详尽注释了《周髀算经》,其中一段530余字的“勾股圆方图”注文是数学史上极有价值的文献。刘徽的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
在南北朝时期数学的发展依然蓬勃,出现了《孙子算经》、《夏侯阳算经》、《张丘建算经》等算学着作。最具代表性的著作是祖冲之、祖父子撰写的《缀术》,圆周率精确到小数点后六位,推导出球体体积的正确公式,发展了二次与三次方程的解法。
1。3中国古代数学发展的盛衰时期。宋、元两代是中国古代数学空前繁荣,硕果累累的全盛时期。出现了一批著名的数学家和数学着作,其中最具代表性的数学家是秦九韶和杨辉。秦九韶在其着作的《数学九章》中创造了“大衍求1术”(整数论中的一次同余式求解法),被称为“中国剩余定理”,在近代数学和现代电子计算设计中起到重要的作用。他所论的“正负开方术”(数学高次方程根法),被称为“秦九韶程序”。现在世界各国从小学、中学、大学的数学课程,几乎都接触到他的定理、定律、解题原则。杨辉,中国南宋时期杰出的数学家和数学教育家,他在1261年所着的《详解九章算法》一书中,给出了二项式系数在三角形中的一种几何排列,这个三角形数表称为杨辉三角。“杨辉三角”在西方又称为“帕斯卡三角形”,但杨辉比帕斯卡早400多年发现。
随后从十四世纪中叶明王朝建立到明末的1582年,数学除了珠算外出现全面衰弱的局面。明代最大的成就是珠算的普及,出现了许多珠算读本,珠算理论已成系统,标志着从筹算到珠算转变的完成。在现代计算机出现之前,珠算盘是世界上简便而有效的计算工具。但由于珠算流行,筹算几乎绝迹,建立在筹算基础上的古代数学也逐渐失传,数学出现长期停滞。