返回
首页 > 数学毕业论文
5 页 客服微信号: bylw8com 客服QQ:3346581880

  五、数学教学生活化中要注意的事项

  一要避免教学过程形式化。不能为数学教学生活化而生搬硬套。二要避免教学准备不充分、仓促上阵。易造成教学目标不明、效果不显,挫伤学生学习热情。三要避免教学环节戏剧化。不能人为地一折又一折,波澜起伏,高潮迭起。而应根据教情学情恰当引导、适时深入,自然形成高潮。并在学习过程中逐步学会学习与反思。数学教学生活化是以生活化的情景为基础的,是以学生的现实生活为基础,任何背离这一原则的做法,都是无本之木、无源之水。

小学生数学与生活论文5

  这样等差数列和的计算公式可以改写成:

  等差数列的和=(首项+末项)*[(末项-首项+差)/差/2]

  于是,习题答案很快就计算出来了:1-3+5-7+9……-1999+20xx

  =(1+5+9+……+20xx)-(3+7+……+1999)

  =(1+20xx)*[(20xx-1+4)/4/2]-(3+1999)*[(1999-3+4)/4/2]

  =20xx*[20xx/8]-20xx*[20xx/8]

  =1001。

  做题目时,只要肯思考,任何题目都会迎刃而解。

小学生数学与生活论文6

  数学俗称“开发脑子的工具”,它无处不在,比方说在学习上,在生活中…~~

  ——题记

  一次,爸爸妈妈外出买衣服,我一个人在家,这可了坏了我这个“滑头”。我蹑手蹑脚的走到电脑旁,开启电脑,本想在“网”里“畅游”一番,可我这个聪明老爸早就知道我这招,便在电脑上设了密码!唉!怎么办呢?只能碰碰运气是一下啦。可我左试右试,每次都不行。

  正想关电脑时,突然看到屏幕上有一个“提示”,我一看是一道算式“20xx÷20xx分之20xx

  等于多少”我蒙了,可为了打电脑,只能拿起演算纸,动起脑筋:

  如果把它化成假分数,那就太麻烦了……。突然,我想起奥数老师曾说过:“一个分数除法算式中,除数是带分数时是不能拆开的',但可以化成假分数,在化成假分数时如果数字大,分子可以不算出来,用两个数相乘的算式表示!”那不就成了,直接:

  =20xx÷20xx分之20xx×20xx+2005

  =20xx÷20xx分之20xx×20xx

小学生数学与生活论文7

  大千世界,无奇不有,如果你做一个有心人,并且善于总结,总能发现它们之间的相互规律。这不,今天,我在做课外习题时,就有了下面一个小发现。

  最近,老师刚给我们讲解了有关等差数列的计算方法,其中最典型的例子为:1+2+3+4+5……+97+98+99+100=?老师讲解的算法为: 1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050,当时,我觉得自己已经听懂了,心想以后碰到这类题目我也可以做了。

  但是,在做到具体习题时,事情的发展并不如我想象的那么简单。今天,我在做习题时就遇到了一只“拦路虎”:1-3+5-7+9……-1999+20xx=?

  咋一看到这道题目,我首先就懵住了,后来,强迫自己冷静下来认真思考,终于理出了一点头绪:这是等差数列,要求出答案,只要把加的部分和减的部分求出,再求差就行了,即,1-3+5-7+9……-1999+20xx

  =(1+5+9+……+20xx)-(3+7+……+1999)

  但是,在计算1+5+9+……+20xx,以及3+7+……+1999时我犯了难,因为它与老师的例题不相同,此时,我才感觉自己没有真正理解老师讲授的方法,于是我不得不重新学习老师的例题,并竭力回忆老师讲解的过程:1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050中,该公式的基本算法应该为:(首项+末项)*数列个数/2;对于从1开始的并且数列之间的差为1的数列而言,其数列个数为最大的数,那么,对于不是从1开始,并且数列之间的差不是1的数列如何计算数列的个数呢? 我陷入了迷茫之中。

  这时,爸爸进来了,见我在思考问题,便也加入进来。爸爸循序渐进的启发我:

  1)1、2、3、4…·8、9、10总共有几个数?

  2)2、3、4…·8、9、10总共有几个数?

  3)0、1、2、3、4…·8、9、10总共有几个数?

  4)2、4、6、8、10总共有几个数?

  5)6、8、10总共有几个数?

  在我计算出结果后,爸爸又要求我分析它们之间的规律,并用公式来表达计算结果:

首页 上一页 1 2 3 4 5 下一页 尾页

猜你喜欢

版权所有 Copyright©2006-2024 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com