1、“纵变”:使学生对某一数量关系的.发展有一个清晰的认
例:某工厂原来每天生产40台机器,现在每天生产50台机器,是原来的百分之几?
变化题:
(1) 某工厂原来每天生产40台机器,现在每天生产50台机器,比原来增产了百分之几?
(2) 某工厂现在每天生产50台机器,比原来增产了25%,原来每天生产多少台机器?
(3) 某工厂原来每天生产40台机器,现在比原来增产了25%,现在每天生产多少台机器
2、“横变”:训练学生对各种数量关系的综合运用。
例:粮店要运进一批大米,已经运进12吨,相当于要运进大米总数的75%。粮店要运进大米多少吨?
变化题:
(1) 粮店要运进大米16吨,用4辆汽车运一次,每辆运2。5吨,还剩下多少吨大米没有运到?
(2) 粮店要运进大米16吨,先用4辆汽车运一次,每辆运2。5吨,剩下的改用大车运,每辆大车运0。6吨。一次运完,需要大车多少辆?
(3) 粮店要运进大米16吨,先用4辆汽车运一次,每辆运2。5吨,剩下的改用大车运,每辆大车比汽车少运1。9吨。一次运完,需要大车多少辆?
(4) 粮店要运进大米16吨,先用汽车运进75%;剩下的改用大车运,每辆大车运的吨数是汽车已运吨数的1/24。一次运完,需要大车多少辆?
(5) 粮店要运进面粉14吨,是运进大米吨数的7/8。这些面粉和大米,用4辆汽车运,每辆运2。5吨,需要运几次?
这样,从“纵”、“横”两个方面进行练习,就不断加深了学生对数量关系的理解,使学生的思维从具体不断地向抽象过渡。发展了逻辑思维,提高了学生分析、解答应用题的能力。
三、一题多解
一题多解主要指根据实际情况,从不同角度启发诱导学生得到新的解题思路和解题方法,沟通解与解之间的内在联系,选出最佳解题方案,从而训练了思维的灵活性。
例1、某班有学生50人,男生是女生的2/3,女生有多少人?
(1)用分数方法解:50÷(1+2/3)=30(人)
(2)用方程方法解:x+2/3x=50或x(1+2/3)=50x=30
(3)用归一方法解:50÷(2+3)×3=30(人)
(4)用按比例分配方法解:50×3/(3+2)=30(人)
例2、某工厂计划10天制造200台机器。结果2 天就完成了计划的25%。照这样计算,可以提前几天完成任务?
有以下几种解法:
(1)10-200÷(200×25%÷2)=2(天)
(2)把计划产量看作“1”。
ⅰ、10-1÷(25%÷2)=2(天)
ⅱ、10-2×(1÷25%)=2(天)
ⅲ、10-(1-25%)÷(25%÷2)-2=2(天)
(3)把实际天数看作“1”。
10—2÷25%=2(天)
这样,培养学生从多种角度,不同方向去分析、思考问题,克服了思维定势的不利因素,开拓思路,运用知识的迁移,使学生能正确、灵活地解答千变万化的应用题。能做到大纲要求的“根据应用题的具体情况,灵活运用解答方法。通过以上形式多样的练习,不仅调动了学生浓厚的学习兴趣,更重要的是沟通了知识间的内在联系,使知识深化,而且可以达到以点带面,举一反三,触类旁通的目的。
小学三年级应用题是整数应用题的总结。在这一阶段把整数应用题中的一般应用题和典型应用题作了一个全面的汇总。所以小三应用题的教学是一个非常重要的阶段,涉及一般应用题到典型应用题,从一步应用题到几步应用题,这就要求学生掌握从普遍到特殊,从简单到复杂的解答方法,也要求教师要帮助学生不断地归纳、综合,让学生从已学习到的解题方法中找出规律,把握特点。
在小学三年级数学整数应用题的教学中,应注意抓住解答应用题的一般方法,教会学生解答应用题的切入点。我们知道解答一般思考应用题的.方法是:问题〈——〉已知。解答过程是:1读题,2分析,3解答,[列式],4检查。而在教学实践中,我觉得最难的是要教会学生把这个程有机的结合。于是,我就提出一些要求,让学生知道解题过程中各个环节中应达到的目的,使学生有的放矢。例如在教学:“三年级一班栽树40棵,二班栽的比一班多5棵。两个班一共栽树多少棵?”