一、对话教学在小学数学教学中的应用
1.学生与学生的对话
在实施对话教学中,生生对话更能促进学生思维的发展。在没有教师参与的对话活动中,学生不再畏惧教师的权威而拘谨,在宽松的氛围中有了自由、大胆表达的机会。学生在独立思考中,放松心情,驰骋思维,对问题的想象无拘无束,酝酿着独特的想法并准备对话。在小组交流与分享过程中,会有平淡的对话,也会有激烈的辩论,同学们虽然都会急于表达自己的独特观点,但也会认真倾听伙伴的想法,在不同的思维碰撞中,通过吸纳别人的意见,或坚持自己的观点,或修正自己的看法,达到不断更新自我认识的效果。学生在充满智慧的对话过程中,不仅收获对知识的理解,更是享受一种平等交流的快乐,感受到同学间的心灵沟通和彼此信任。在生生对话的课堂里,学生不再自我封闭,而是善于思考、表达和敢于质疑,在宽松的对话中理解知识、内化知识。如教授“平行与垂直”中“平行”概念的时候,学生画出几组两条不同位置关系的直线,教师引导学生分类,在分类过程中,观察图形“=”,有的学生认为这两条直线不会相交,有的学生认为会相交。此时,教师把不同观点的同学分成正方和反方两队,让双方都充分说明自己的观点是正确的,并展开对话。
2.教师与文本的对话
在对话教学中,教师与文本成为平等的主体,文本总带有编者的意图和思想,教师在认真钻研文本的同时,也带有自己的特殊体验和情感,使自己的教学源于文本,又高于文本。由于网络快餐文化的便捷,下载、模仿、拼凑教案等现象已成为很多教师正常化的工作。教学实践中,没有深入地解读教材,哪能有精彩的预设与生成,更谈不上有高效的课堂教学。因此,提高课堂的有效性应从深入解读教材、与教材深层的对话开始。讲授人教版五年级上册“平行四边形的面积计算”时,教材中呈现让学生通过数方格的方法求出平行四边形的面积,特别指出不满一格按半格算。如果教师以此照搬文本教学,势必影响学生探究效果,调查中发现,大多学生不明白为什么不满半格能按半格算。其实,编者的意图是让学生通过数方格,启发学生用转化的方法推导平行四边形的面积计算公式,但这样的文本,很难让学生联想到沿着平行四边形的高剪开拼成一个长方形。因此,教师与文本的对话就在于创造性地使用教材,让文本更好地为学习服务。教学中,教师让学生用数方格的方法求出平行四边形的面积,但不出现不满一格按半格算的提示语,而是改为问题:哪个同学能用好方法快速数出平行四边形的面积?这样的问题设计就逼着学生先数满格的,再数不满格的,而不满格的面积不一样,怎么办呢?学生细心观察后发现,原来图形中藏着秘密,最左上角的不满格移到最右上角的不满格的位置上,刚好拼成一个满格,这个发现就是移拼的转化方法。应用这个方法,学生观察整个左边的不满格都可以与右边的不满格拼成满格,但拼成的是一个不规则的图形,难于快速算出面积。再次观察后发现,如果沿平行四边形的高剪开,把左边的方块移到右边,就可以拼成一个长方形,再数方块就是最便捷的方法,学生对转化思想有了进一步的理解。最后,学生用所带的平行四边形图形进行剪拼实践,通过操作、观察、交流、推导,自主得出平行四边形面积=底×高的结论。这样的教学,教师并没有改变编者的意图,只是稍微改变文本的表述,却取得了显著的效果。因此,课堂教学中,教师不要把教材当权威,不要简单地认为学生都会想到把平行四边形沿着高剪开拼成长方形。可见,只有教师与文本的深入对话,根据学生的认识水平,合理并创造性地使用教材,才能使学生在最近发展区有效探索,提高学习质量。
4.学生与文本的对话
文本自己是不会说话的,但文本是有思想的,它是经过精挑细选的人类知识的精华,对学生传授知识、发展思维、培养能力具有重大的意义,而这种意义只有学生对文本的深入解读、丰富体验、深刻领悟,才能真正为学生所接受,文本也才能真正体现其内在价值。小学数学教材中的“你知道吗?”是实验教科书新增设的栏目,它是教学内容的延伸,是传承数学文化的有效载体。人教版六年级上册“比的应用”教学中安排了“你知道吗?”的内容,介绍了“黄金比”:你听说过“黄金比”吗?当一个物体的两个部分之间的比大致符合“黄金比”——0.618:1时,会给人以一种优美的视觉感受。如果学生只知道黄金比这个词,那就误读了教材的知识功能,更谈不上数学美的价值所在。学生在文本的启发下,通过网络查询、咨询家长,发现“黄金比”在日常生活中随处可见,不仅欣赏到蒙娜丽莎画像、古希腊女神维纳斯塑像的.黄金比例的艺术品,还发现巴特农神庙、古埃及胡夫金字塔等建筑作品都隐含着神奇的黄金比,这就是与文本对话的价值。但是,生活中一般人很难达到维纳斯女神“黄金比”这样优美的身材,一般人的躯干与身高比都低于0.618这个数值,大约只有0.58——0.60左右,智慧的人们发明了让女人穿高跟鞋来改变比值,使得躯干与身高的比值更接近黄金分割的标准0.618,产生美的效果,从而人为地创造美。学生通过对文本的深入对话,不仅对比的知识有了深刻的理解,更是对数学美的充分挖掘。