(2)逐步加深对有理数的认识
引入负数后,扩大了数系,首先应说明有理数与算术数的不同特征。一个有理数由符号和数字二部分构成,同时应强调有理数是在算术数的基础上建立的。其次讲清其分类,与算术数比较,有理数的成员增加了一位——负数。
(3)有理数运算符号为首
有理数的运算是由两部分构成,一是符号,另一是数字。各类运算首先应根据法则确定结果的符号,再求结果,强调一个结果中,符号与数字并驾齐驱,同时正确为对,否则为错。
2数与代数式
由特殊的,具体的,确定的数到一般的、抽象的、不定的字母,是一个知识的飞跃。因学生刚接触,难理解,要善于引导,切莫操之过急。
(1)用字母表示数的优越性
小学学过的一些公式、法则、运算律等书写沉长,用字母表示简明扼要,可举例用文字表达式与字母表示同一关系,让学生领略其优越性。
(2)加深对字母a的认识
a是正数,—a是负数,是学生的一个误区。为此首先应说明符号“一_”的作用,一是表示运算符号,如1—2;二是表示性质的符号,如2;三是表示某数前有“一”号,则为其相反数,其次说明,a表示有理数,而有理数由符号和数字构成。因此a本身包含着数字与符号,即a可正、可负、可零。同理说明—a。
(3)基本数学语言的培养
a是正数表示为a>0;n为整数时,偶数与奇数分别表示为2n与2n+1;a、b同号表示为ab>O;a、b异号表示为a/b<0;等等,数学语言都应从初一开始,循序渐进,特别在作业中强调尽量使用数学语言。
(4)列代数式的训练
此项训练可为应用题清除障碍、铺平道路,可用小学具体的数再过度到式。
3算术解法与代数解法
小学中,解决应用问题学生习惯一般用算术法,即就是上初一有的学生习惯于把问题用算术法来解,难以转弯。
首先可由简单的应用题入手,把二法对比,使学生逐步掌握代数法解题的一般步骤。其次用具体例子说明代数解法的优势,使学生体会到算术解法套类型的复杂,代数解法的简明。因此,做好这方面的衔接,是学生思维方法上的另一转折,无疑对提高学生数学能力和激发学生学习兴趣起到了推波助澜的效应。
二、教法上的衔接
中学与小学学习内容上的差异,导致了二阶段教学法上的不同。作为初一教师有必要研究一些小学数学教学方法,吸取其优点针对初一新生的特点优化教学方法。
1旧与新
用已有的知识技能为基础,学习和掌握新的知识技能,可按如下操作:
①结合新课分散复习小学有关数学知识
②复习形体计算公式结合代数式进行教学
③复习算术解法结合代数解法进行应用题教学
2讲与练
根据初一新生注意力不持久的特点,多采用讲练结合的方法充分让学生动口、动手、动脑,不断唤起其注意力,活跃课堂气氛,激发其兴趣与热情。
三、学习习惯与学习方法的衔接
小学到初中是学生学习生涯的转折。新的教学内容,新的`教学环境,使他们抱有新的希望,我们应善于抓住这一有利时机,因势利导,指导学生的学习方法,良好的学习品质由此开始培养。
1继续保持良好的学习方法和习惯
在小学学生形成的许多良好习惯,如坐式端正,回答踊跃,声音响亮,书写端正,这是小学教师栽培的结果,倡导学生继续保持。
小学教师教态亲切,讲课具有感染力,学生都在准备回答教师提出的问题,对初一学生,我们应当爱护学生举手发言的主动性,让每个学生有发言的机会,否则会挫伤其思考问题的积极性。
2指导科学的学习方法,培养良好的学习习惯
小学阶段科目少,学习内容浅,尽管学法不妥,只要用功,亦能取得好成绩。但到中学,科目倍增,学习内容加深,学习方法就成为突出矛盾。
初一学生年龄小,基于小学的学习习惯,误认为学数学就是做作业,课本是“习题集”,这就要求我们逐步培养学生的自学能力,指导学生阅读知识的载体——课本,指导学生预习、巩固、小节,要求学生对作业做到独立完成,认真检查,有错就改。