怎样丰富学生“问题解决”的实践过程,在灵活多样的问题解决过程中,尽量使每位学生发挥其思维的最大潜能,使他们感到脑力劳动中取得成功的喜悦,已成为我们数学课堂教学中思考的重要课题。
首先,要激励学生自主探究,寻求方法。数学学习活动中,学生是学习的主体,在学生进入角色以后,教师应留出足够的时间让学生探究交流,寻求解决问题的方法,并发表自己的独特见解和感受。
有一位教师在叫“两位数加一位数(进位)”时,一改往常教材中的“讲解式”(摆小棒)的呈现方式为学生自主探究的“问题发现式”,这位教师是这样设计的: “爸爸让明明计算18+7,明明冥思苦想了一会儿,向同学们求助,谁有妙法帮我吗?”一石激起千层浪,同学们顿时情绪高涨,积极思考,此刻教师及时组织学生讨论,通过小组讨论、同桌互说等形式,充分发挥集体的作用,体现团结合作的精神,让每个学生都有主动参与的机会,加强了学生间多向交流。最后,学生想出了多种方法:有把18看成20(20+7-2)的;有把18分成13和5(13+7+5)的;有把7分成2和5(18+2+5)的;有数手指的;也有用竖式计算的,等等。 学生通过自主探究后,用语言表达出自己的思维过程,这正是学生自主创新的一种体现。
问题一旦经过一番努力后被解决,学生就会有紧张愉快的体验,有成就感、自豪感、价值感,这些心理倾向是激励学生进一步探究的源动力。 其次,可建立学习小组。学生的发展存在者不平衡性,无论哪个班的学生,他们的智力发展水平、所具有的能力以及他们对生活、对数学问题的认识是各不相同的。在课堂上,面临着要解决的一个个数学问题,学生的解决方法是各不相同的。为了使不同发展水平的学生都能解决问题,我们可采用小组学习的方法,建立学习小组,小组中学习水平上、中、下的学生进行合理搭配,推荐一个学习水平较高的学生担任组长,让不同水平的层次的学生的信息联系和反馈信息在多层次、多方位上展开。
这样,小组成员对所要解决的数学问题进行适时的合作交流,互相探讨解决问题的最佳策略与方法,互相取长补短,共同达到圆满解决问题的目的。在经常性的合作交流中,提升理解问题、解决问题的能力。 再次,要鼓励学生动手实践,在操作探索中解决数学问题。
皮亚杰认为:“认识一个客体,必须动之与手”、“一切真知都应由学生自己获得,或由他重新‘发明’,至少由他重新构建,而不是草率地传递给他。”因此,教师在教学中因突破教材的局限,变传递结论为鼓励发现新知。
事实证明,学生提出的问题,有很多可以让学生自己通过操作探究而获得。如针对学生所提问题“圆柱上下两个底面的面积相等吗?”教师可以不直接告诉学生,而引导学生动手操作,让他们对自己的圆柱模型进行自主操作,讨论“有什么方法验证圆柱两个底面是否相等?”这样学生通过剪、量、叠等多种方法,进行积极地讨论、探索,得出“把上下两个底面剪下叠起来,是否完全重合”;“量上下两个底面的直径、半径、周长,是否相等”;“上下两个底面的对称轴是否相等”等多种检验方法,并从中得出“圆柱上下两个底面面积相等”这一结论。学生通过这样的学习过程,自己动手、动脑、动口、动眼,解决了问题,使其即知其然,又知其所以然。 又如,在学习“平行四边形”这一内容时,一位教师设计了这样一题:“请在下面平行四边形上画一直线,使分成的两部分面积相等。”
于是学生纷纷投入“如何分”的学习活动中,热烈地讨论、大胆地尝试、独立地操作、积极地思考……结果找到了不同的解题方法。(如图) ……得出,这样的线可画无数条。 但教师并不到此为止,而是接着提问:这些平分线有什么共同的特点吗?再次激起了学生的探究热情,学生通过讨论明白了只要是通过平行四边形中心点的直线,都能平分这个平行四边形,同时孕伏了平行四边形是中心对称图形这一知识。这样的处理使学生获取知识、拓展思路、培养能力有机的结合起来了。
三、引导学生合理地应用知识,发展学生的应用意识。