以疑激思。
如在教“能被3整除的数的特征”时,教师先让学生随便报数,教师很快说出了这个数能否被3整除,然后让学生验算,结果全对。
接着顺势诱导:这样一个一个去除太费时间,能不能不用除法,一看就知道一个数能否被3整除呢?学生思维活跃,兴趣很高。又如在教“面积和面积单位”时出示一块长方形木板,正反两面都摆满小正方形,让左、右两边学生分别观察正面和反面,数一数,摆了几个小正方形。一方观察时,另一方要闭上眼睛。观察结果,一方说是12个,一方说是18个。老师便引导学生讨论,使之懂得了:用摆小正方形的`方法度量面积,必须用同一大小正方形来度量。这样就自然引出了面积单位的问题。教师通过演示质疑,在关键处激疑,组织学生讨论解疑,逐步把学生的思维引向高潮。
以比促思。
根据神经系统的对称规律,两种性质不同或类似的对象同时或先后出现,由于大脑皮层的相互诱导规律,可以提高感知效果,增强思维的兴趣。因此,在数学教学中,也要善于运用比较的方法,帮助学生分清知识的联系和区别,以便加深对知识的思考、理解和记忆。如在教“三角形的认识”时,先让学生拿出事先准备的6个三角形,看每个三角形的三个角各是什么角?把具有共同特征角的三角形归为一类,看能分几类?然后总结出三类三角形的相同点(都有两个锐角)和不同点(另一个角分别是锐角、直角、钝角)。这样进行观察比较,学生边看边比边想,很快掌握了三角形的不同种类及其特点。
纠错畅思。
学生在做题常常出现一些错误,教师要善于以学生解题之错作为探究错因之源,引导学生纠正错误,认识错源,以便畅通正确的思路,如在教完《比的基本性质》后,为了强化巩固这一性质,教师出了这样一道题:“3/8这个比的前项加上6,要使比值不变,它的后项要加上几?”有的学生不加思索地回答:“要加上6”。有的则答不上来。为了纠正错误,疏通思路,教师引导学生思索:(1)什么是比的性质?(2)比的前项加上6等于9,就相当于把比的前项乘以几?(3)要使比值不变,比的后项应该乘以几?这样巧设提问,使学生不仅纠正了错误,而且找到了思维的落脚点,寻到了解决问题的途径。
以变活思。在应用题教学中,对已知条件进行适当的变化,不仅可以深化对应用题的理解,掌握规律,防止知识的负迁移,而且可以活跃思维,开阔思路。如一道分数应用题:“修一条路,面积是1600平方米,修了全路的3/4,修了多少平方米?”可以变为:“修一条路,面积是1600平方米,第一天修了全路的1/2,第二天修了全路的1/4,修了多少平方米?”
还可变为:“修一条路,面积是1600平方米,修了3/4,还剩多少平方米?”等等。
这样几经变化,使学生掌握了解答分数应用题的不同思路,思维更加活跃。有些应用题有多种解法,教师要引导学生变换思维角度,广泛探求解法。
在数学教学中,运用多种形式激发学生的兴趣,启发学生积极思维,是提高数学教学质量的好方法。
数学是什么呢?单纯的算式、枯廖乏味得标题?数学,不就是数的学问吗?那你就太不了解数学了。
我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具。
数学在生活中无处不在,我们的一切日常几乎都用到了它。如:
“水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学。”
“要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学。”
“生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的'”数学。这使得生物学获得了重大的成就。