返回
首页 > 开题报告
19 页 客服微信号: bylw8com 客服QQ:3346581880

  (3)所遇到的函数展开为泰勒公式不难。

  当确定了要用泰勒公式求极限时,关键是确定展开的阶数。 如果分母(或分子)是,就将分子(或分母)展开为阶麦克劳林公式。 如果分子,分母都需要展开,可分别展开到其同阶无穷小的阶数,即合并后的首个非零项的幂次的次数。

  Taylor公式在证明不等式中的应用

  有关一般不等式的证明

  针对类型:适用于题设中函数具有二阶和二阶以上的导数,且最高阶导数的大小或上下界可知的命题。 证明思路:

  (1)写出比最高阶导数低一阶的Taylor公式;

  (2)根据所给的最高阶导数的大小或上下界对展开式进行缩放。

  有关定积分不等式的证明

  针对类型:已知被积函数二阶和二阶以上可导,且又知最高阶导数的符号。

  证题思路:直接写出的`Taylor展开式,然后根据题意对展开式进行缩放。

  有关定积分等式的证明

  针对类型:适用于被积函数具有二阶或二阶以上连续导数的命题。

  证明思路:作辅助函数,将在所需点处进行Taylor展开对Taylor

  余项作适当处理。

  Taylor公式在近似计算中的应用

  利用泰勒公式求极限时,宜将函数用带佩亚诺余项的泰勒公式表示;若用于近似计算,则应将余项以拉格朗日型表达,以便于误差的估计。

  研究方法

  为了写好论文我到中国期刊网、中国知识网和中国数字化期刊群查找相关论文的发表日期、刊名、作者,接下来要到图书馆四楼过刊室查找相关文献,到电子阅览室查找相关期刊文献。 从图书馆借阅相关书籍,仔细阅读,细心分析,通过自己的耐心总结、研究,老师的指导、改正,争取做好毕业论文工作。 具体采用了数学归纳法、分析法、反证法、演绎法等方法。

  进度计划

  为了有准备有计划的做好我的论文工作,我为自己安排了一个毕业论文进度计划,我会严格按照我的进度计划,及时完成我的毕业论文工作。

数学小课题开题报告 4

  一、选题的现实意义

  1、目前小学数学课内外作业的现状:

  ①长期以来,由于应试教育的影响,作业内容拘泥于课堂知识,拘泥于教材,往往以试卷中出现的形式作为课外作业的模式,完成同步练习,机械、重复的较多。作业陷入机械抄记、单调封闭的误区不能自拔。那些限于室内,拘于书本的静态作业使学生埋头于繁琐重复的书面练习而苦不堪言。作业脱离学生生活实际,围着书本做文章的现状,削弱了学生解决实际问题的能力,泯灭了学生的学习热情,也严重影响了学生的身心健康。

  ②通过调查发现由于教师在布置练习时只从本身意志出发,而忽略了学生的心理需求,练习、作业形式单调,书面作业似乎是其唯一的形式,毫无新鲜感可言,更谈不上趣味性,致使众多小学生逐渐形成不良的作业习惯。

  ③我们的教育活动以理论学习为主,以课堂教学为主,评价教学的手段也以考试为主,应试教育倾向严重,学生的动手能力、实践能力较差,缺乏创新的精神和能力。

  2、时代的呼唤。

  ①新课程明确提出:“有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。重视课程内容与现实生活的联系,增选在现代生活中广泛应用的内容,开发实践应用环节,加强实验和各类实践活动,培养学生乐于动手、勤于实践的意识和习惯,提高实际操作能力。”

  ②数学来源于生活,也应用数学知识去解决生活中的各类数学问题。练习是课堂教学的延伸和继续,是提高课堂教学效率的`重要手段和保证,其重要性不言而喻。加强知识与实践的联系在数学练习中变得十分必要。从课改精神出发,改革练习设计已成为摆在我们面前的一个亟待解决的问题。使练习的内容体现个性化、生活化和社会化,作业的形式强调开放、探究和合作,练习的手段追求多感官、多角度,让学生动起来,使练习活起来,促进学生在生活中学习,在实践中运用,在开放中创新,以便收到较好的效果。

  基于对练习重要性的认识和练习现状的分析和反思,我们提出了“小学数学练习设计的有效性研究,旨在通过研究,改变传统的练习观,确立效率意识,从现状出发,从“有效”入手,反思当前哪些练习是有效的,哪些练习是低效甚至是无效的,使学生学得既扎实又轻松,实现真正意义上的“减负提质”。

首页 上一页 2 3 4 5 6 7 下一页 尾页

猜你喜欢

版权所有 Copyright©2006-2024 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com