三、拓展思维方式、提升思维水平
概率统计的思维方式能够拓展学生的思维广度,打破原有思维方式对学生的束缚,进而全面提升学生的思维水平,因此它是人们不可缺少的思维模式。
统计方法是一种实证主义方法,是归纳与演绎的有机结合,它通过大量的随机试验从偶然性中发现规律性、必然性。探究过程中采用的统计归纳、逻辑演绎等具有或然性特征,但这种或然性又具有一定的概率保证,也就是在一定概率程度上对命题进行“证明”。
例如概率统计中著名的“蒲丰投针问题”,即通过对随机试验及其数据的观察、分析、处理,求出圆周率π的近似值。这一实验法开创了用偶然性方法去攻克确定性问题的先河,将必然数学与或然数学联系在了一起。
虽然在小学阶段无法学习复杂的“蒲丰投针问题”,但依然可以运用这种思想方法设计一些概率统计问题,从而达到提升学生思维水平的目的。
【例3】 一个不透明的袋中装有4个红球和1个白球共5个球(事先不告诉学生具体的白球与红球数目,只告诉他们袋中球的颜色为白色和红色),让学生通过足够多次有放回的摸球,统计摸出白球与红球的数量及各自所占比例,由此估计袋中白球与红球数目的情况。
该问题的解决可以分为以下几个层次。
(1)学生已有的经验是“知道袋中球的颜色和数目的情况下,摸到哪种颜色球的概率较大,具体是多少”。本题可由已有的经验出发,引导学生思考、讨论“在不看和不数袋子里球的颜色的前提下,如何估计袋中白球与红球数量的情况”,启发学生想到可以通过摸球得到数据,进一步由数据进行估计。
(2)通过大量有放回的摸球试验,学生发现每次摸出的球的颜色不确定,初步感受数据的随机性。如果进行足够多的试验,进一步统计摸出的白球与红球的数量,就可以估计袋中是白球多还是红球多,在随机性的基础上体会规律性。
(3)在(2)的基础上,随着试验次数的增加,发现摸出白球的次数与摸出红球的次数的比趋于稳定,学生可以估计出袋中白球数量和红球数量的比,进一步体会规律性。估计出了袋中白球数量和红球数量的比,并知道了袋中两种颜色球的总数,就可以估计白球和红球各自的数量。
当然,小学生无法用概率的方法进行准确、科学的推断和预测,只能是一些猜想,属于没有证明的合情推理。概率推理作为一种合情推理,是与代数推理、几何推理同样重要的一种推理形式。波利亚说过,合情推理是与逻辑推理一样重要的推理,是更具创造性的推理。因此,经过长期的概率统计学习,学生的合情推理能力自然可以得到相应的提高。
四、培养良好的科学品质和辩证唯物主义观念
概率统计是在解决各种实际问题中发展起来的,其解决问题的方法和结果的呈现方式也较为特别,对于学生科学品质的培养和辩证唯物主义思想的形成有巨大的帮助。
从概率统计的角度去观察、探索和解释现实生活或科学领域中的随机事件,能够对现实世界中的很多事情形成自己的看法,有助于培养学生的探索精神。因此概率统计的学习不能沿用传统的记忆和机械的解题训练方法,同时,概率统计的随机性使得解决问题的模式具有多样性和不重复性,需要不断创建新模式来解决新问题,有益于学生创新精神的培养和创造能力的提高。科学应用信息作出正确决策是概率统计的主要任务,概率统计能教会学生合理运用规律作出正确的决策,培养自身的决策能力和决策意识。解决概率统计问题时,常常需要多人共同参与,解决问题的过程就是分工协作、相互配合的过程,这也有利于培养学生的合作精神。概率统计告诉我们,事物的偶然中蕴含必然,必然中又带有偶然,这一辩证关系是事物的固有属性,也是我们思考和研究问题所必须持有的思想观念。
【例4】 在可能性的教学中,可以设计如下问题:
(1)在一个布袋中有1个红球和1个白球,从中任意摸一个球,摸到红球与白球的可能性相等吗?
(2)如果袋中有2个红球和1个白球,从中任意摸一个球,摸到红球与白球的可能性相等吗?
(3)如果袋中有9个红球和1个白球,从中任意摸一个球,能摸到白球吗?