跳频通信系统FCS技术研究
【摘要】在有中心组网的跳频通信系统中,为了对抗阻塞干扰,提出了系统FCS技术。利用专用信道进行实时信道质量检测,并选取最优信道进行通信。经工程实践分析,系统FCS技术可有效提高抗阻塞干扰能力,降低丢包率,提高通信质量。
【关键词】跳频通信 空闲信道 扫描 最优信道 抗阻塞干扰
一、引言
空闲信道扫描(FCS,Free Channel Scan)是无线通信终端抗干扰接入的关键技术。本文基于专用的宽频段、多信道、有中心组网的跳频通信系统,开展FCS及其关键技术研究。
首先,概述了基于TDMA的通信系统架构,具体如图1所示,图1中绿色区域与FCS技术相关。PHY层包括TDMA空中接口、逻辑信道、同步(位同步、频率同步、帧同步);MAC层包括信道编码(Turbo编码、循环冗余检验CRC校验)、信道质量检测;RRC层包括频率资源管理(工作频率表、基站接收信道的质量排序、通信最佳频率的映射表)、信道资源管理(信道连接状态指示、信道连接恢复)。
RRC层功能实体对每一段的信道号进行随机排列,减少基站各段的频率碰撞。系统每次开机时RRC层功能实体得到基站编号,并重新计算和更新频率表。基站和移动用户台利用通信过程中逻辑信道的信道质量检测结果对所有频率的接收质量进行排序,将排序结果保存在列表中,并实时进行更新维护。
基站和移动用户台根据信道质量排序结果列表,计算出下一次通信使用的最佳信道和备用信道。基站负责计算上行的最佳通信频率,移动用户台负责计算下行的最佳通信频率。由于系统是有中心组网的星型结构,基于基站与移动用户台间通信距离在覆盖范围内,基站计算的最佳上行通信频率所有移动用户台可以共用,移动用户台计算的最佳下行通信频率只能对应本移动用户台使用。
在通信过程中基站和移动用户台通过控制信道互相交换计算的最佳上下行通信信道,保存在列表中。
其次,概述FCS基本原理,对其中信道质量检测和信道优化技术作了重点研究。
最后,通过系统实测试验,给出不同阻塞干扰情况下的信道丢包率统计表、信道在阻塞干扰下的躲避响应时间表。
二、FCS基本原理
FCS是一种抗阻塞干扰接入技术,应用于有中心组网的系统,其基本工作原理如图2所示,信道扫描过程如下:
(1)基站和移动用户预置若干个频率点作为工作频率,基站和移动用户实时进行全频段信道扫描接收,记录各频点的信号场强、误码率等信息,同时判断是有用信号还是干扰信号,并进行统计分析,得到己方最佳接收频率集合,最后汇总到基站进行分析和信道频率分配。
(2)通信业务开始时,基站通过信令和广播的方式为移动用户分配最佳接收和发射频率。通信过程中,基站和移动用户可实时扫描信道状态,并更新己方最佳频率集合;如果当前频率受到干扰,可启用最佳频率集合中备份频率进行通信。信道扫描和频率更新时不影响通信业务过程。结束后,释放该信道,双方重新退回到信道扫描状态。
三、信道质量检测和信道优化技术
对于各个逻辑信道的信道质量检测,主要依靠对同步帧的误码统计及FEC解码结果的误码统计来进行检测。其中,对于同步逻辑信道(同步帧),依据卡萨米序列相关器输出的错误比特数进行信道质量统计。对于控制逻辑信道和业务逻辑信道依靠解码器输出的误码统计结果进行信道质量统计。
信道质量检测和优化算法如图3所示:
图3信道质量检测和优化原理框图
从空口收到的频率信号经解调后,在基带同时进行同步逻辑信道处理、业务和信令逻辑信道处理。其中同步逻辑信道采用相关码卡萨米序列检测并输出信道质量统计值。业务和信令逻辑信道采用迭代译码和帧误码分析输出该信道质量统计值。统计出跳频信道质量等级,并据此进行信道频率优化处理,最终根据最优信道生成跳频频率,用于通信。
系统的信道质量检测结果除了用于选取最优信道,还可用于上行信道质量的统计,作为频率规划的评价。