2数据拟合的案例教学实践
所谓数据拟合是指已知某函数的若干离散函数值,通过调整该函数中若干待定系数,使得该函数与已知点的差距最小,最常用的数据拟合方法为最小二乘法。在数据拟合的教学中,可采用下列数学建模问题的求解进行案例教学。
例2:数据拟合教学案例――上海市就业人口预测
已知2000年~2009年上海市每年的就业人口数,如表3所示,现要预测2010年上海市的就业人口数,并与2010年真实的就业人口数(1574.6万人)进行对比分析。
表3上海市就业人口统计(单位:万人)
图2上海市就业人口数拟合图形
通过此案例的教学,不但可以让学生理解最小二乘曲线拟合的基本原理与步骤,而且还可以为学生参加数学建模竞赛时进行数据处理打下基础。
2.3数值微分的案例教学实践
所谓数值微分是指根据函数在一些离散点的函数值,构造一个较为简单的可微函数近似代替该函数,并将简单函数的导数作为该函数在相应点处导数的近似值。常用的数值微分公式有差商公式、两点公式、三点公式等。在数值微分的教学中,可采用下列数学建模问题的求解进行案例教学。
例3数值微分教学案例――人口增长率[7]
已知1950年~2000年每10年中国人口的统计数据如表1所示,试计算这些年份的人口增长率。
表4中国人口统计数(单位:亿人)
3结束语
为有效地实施数值分析课程的实践教学,本文主要介绍了几个针对数值分析不同教学内容的数学建模实践教学案例。通过对实际问题进行数学模型的建立和求解,将数学建模思想融入到数值分析的教学中,不但可以让学生较好的掌握数值分析的有关理论与方法,而且还可以培养学生的数学建模能力,为参加数学建模竞赛时打下一定的基础。
参考文献:
[1]赵景军,吴勃英.关于《数值分析》教学的几点探讨[J].大学数学, 2005, 21(3): 28-30.
[2]郭金,韦程东.在数值分析教学中融入数学建模思想的研究与实践[J].广西师范学院学报(自然科学版), 2008, 25(3): 124-127.
[3]杜廷松.摭谈数值分析实验课程中的任务驱动教学[J].中国电力教育, 2008, 1: 118-120.
[4]王强,金珩. MATLAB环境下的数值分析教学软件开发[J].内蒙古民族大学学报(自然科学版), 2004, 19(2): 176-179.
[5]刘艳伟,司军辉.数值分析课程教学改革若干问题探讨[J].黑龙江教育学院学报, 2010, 29(6): 75-76.
[6]钟尔杰,黄廷祝.数值分析[M].北京:高等教育出版社, 2004.
[7]宋来忠,王志明.数学建模与实验[M].北京:科学出版社, 2005.