起初,集合论主要是对分析数学中的“数集”或几何学中的“点集”进行研究。但是随着科学的发展,集合论的概念已经深入到现代各个方面,成为表达各种严谨科学概念必不可少的数学语言。
随着计算机时代的到来,集合的元素已由传统的“数集”和“点集”拓展成包含文字、符号、图形、图表和声音等多媒体信息,构成了各种数据类型的集合。集合不仅可以用来表示数及其运算,更可以用来表示和处理非数值信息。数据的增加、删除、修改、排序以及数据间关系的描述等这些很难用传统的数值计算操作,可以很方便地用集合运算来处理。从而集合论在编译原理、开关理论、信息检索、形式语言、数据库和知识库、CAD、CAM、CAI及AI等各个领域得到了
广泛的应用,而且还得到了发展,如扎德(Zadeh)的模糊集理论和保拉克(Pawlak)的粗糙集理论等等。集合论的方法已经成为计算科学工作者不可缺少的数学基础知识。
参考文献:
〔1〕屈婉玲,耿素云,等。离散数学[M]。北京:高等教育出版社,20xx。
〔2〕KennethH。Rosen。离散数学及其应用[M]。北京:机械工业出版社,20xx。
〔3〕陈敏,李泽军。离散数学在计算机学科中的应用[J]。电脑知识与技术,20xx。
〔4〕龚静,王青川。数理逻辑在计算机科学中的应用浅析[J]。青海科技,20xx。
等数学论文写作课,已引起我国从事数学继续教育同行们的注意和重视,国内很多学者明确提出应在继续教育中开设这一课程。90年第11期《数学通报》上吕连根、朱学志的文章“关于继续教育课程设置的结构问题”就指出:为了提高教育教学技能,应开设教育教学论文写作研讨课程。杭州教育学院编制的继续教育大纲,也列人了这一课程,并计划30学时,但是这门课在继续教育中的地位和作用、理论框架、课程结构、开设方式等问题有待进一步探讨。笔者对此进行了思考,得到一些浅见,在此端出,就教于同仁,以期其更快完善、成熟。
初等数学,作为整个数学大厦的基础部分,经过几千年来的发展,其基本理论己经成熟,世界各国的中学数学内容及其理论大致一样,具有相当大的稳定性,但就其教育理论,几以及其包含的思想方法、解题技巧还在继续深化、发展,初等数学的研究领域日益广阔,呈现十分活跃的状态。外国的情况姑且不说,就我国而言,每年二十八家而向中学数学教育的期一刊的出版,几千篇文章的问世。
初等数学研究蓬勃崛起、方兴未艾可见一斑。研究初等数学问题,除了大专院校、科研部门外,从事初等数学教育的中学数学教师也能从事这方面的研究,他们处在教学第一线,对初等数学的思想方法、解题技巧理解得很沉具有科研人员所不具备的教育实验环境,更易遇到具有教学意义和实践价值的问题,因而中学教师无疑是研究初等数学问题的丫支主力军。
然而,中学数学教师的现状是不尽人意的。长期以来,数学界形成了研究高等数学才是搞学问,研究初等数学就不是搞学问的偏见,使得每年进人中学当老师的大学毕业生,面对严谨而成熟的初等数学,往往误认为初等数学的问题已经研究完了,没什么研究头了,从而创造研究意识淡化,探索动力萎缩,迟迟进人不了科研之门。在中学,几十年的数学教师没写过一篇论文的现象并不鲜见。教学与科研的分离,_导致教学上的简单重复和机械模仿,教学变成了毫无生气的知识再现的僵化过程,质量的提高受到很大影响,教学难有大的飞跃和突破。从另一方面看,教师本人不从事研究和创造,体会不到教育创造带来的激情和乐趣,得不到成就感的抚慰,也会丧失进取的精神和远大志向,导致工作效绩滑坡。苏联教育家苏霍姆林斯基指出:“如果你们想使教育劳动给教师带来欢乐,使日常讲课不致变成单调乏味的义务,那就把每一位教师引上科学研究的康庄大道,而最先成为教育劳动能手的人,就是感到自己是位研究者的人。”由此可见,强调中学数学教师开展科研活动,不仅对提高教师素质、提高教学质量有重要作用,而且对于教师发挥自身潜能、展现人生价值、提高职业自豪感有重要意义。
搞科研,就要产生论文,论文是科研成果的文字表述。而论文对疥个大学生来讲,并不陌生,每个数学系的学员一般都要作毕业论文,然而,毕业论文还只是科研活动的模仿和尝试,还难以称的上是真正的科研活动。因为一般大学生没有从事中学数学教育的实践活动,又寸中学教材不熟悉,初等数学的思想方法体会的并不深,难以遇到真正有价值的“困惑”,因此所选的论文题目或与教育实践结合的不紧,尸或者高大空洞,或者论述不深人,价值一般不大。