返回
首页 > 开题报告
31 页 客服微信号: bylw8com 客服QQ:3346581880

  .它主要是由人的手势决定也会有一些面部表情进行辅助,因此我们要对手语进行识别,首先必须要弄清手势含义,目前很多对手语的识别是依靠计算机视频识别来实现的。自上世纪九十年代以来,计算机技术得到迅猛发展已经深入到生活的方方面面之中影响迅速扩大,而且在日常生活中多模态接口技术已经变得越来越普遍。虽然传统鼠标和键盘随着计算机技术飞速发展而变得越来越先进,但是由于人的需求也在发生着很大的变化,这些传统设备也逐渐凸显出了它们的局限性,在虚拟现实和人机交互上这种限制是有着明显的表现。人机交互中手势是输入和输出的非常重要的方式,所以手势识别是多模式接口技术的一个重要部分。

  随着技术的不断革新,用户对传统计算机的要求已经不仅仅局限在便利性和人机交互的方面,导致传统设备在人机互动方面已经无法满足用户的需求。而手势识别就是解决高人工智能领域的局限性问题的,它作为多模式人机接口技术已成为当前计算机技术继续深入研究的方向,能使通信在人机交互界面技术上使用的更加自然和谐,手势识别最接近的就是手语识别,对它的研究涉及心理学、人工智能、计算机视觉等多领域的学科研究,而且作为日常生活中沟通的一种方式已开始受到大批专家和学者的关注,并在手势识别研究方向开始投入大量科研经费和精力,由于手势手臂本身较为复杂而且它的时间和空间差异使得手势识别已经成为一个具有挑战性的多学科交叉融合的研究课题。

  二、课题研究内容

  1.手势的表示

  手势表示通常是利用手势模型和模型参数来表示的,所以在识别手势的时候首先要要对手势建模,识别是根据手势表示内容而选取手势特征量与模型匹配,由于环境文化和地区的不同会导致了手势的差异,可能会有使用不同的表达方式,所以手势通常是一个不太明确的概念,有时手势表达的含义在不同情景下承载的信息是不同的。比如不同地区表示暂停的时候是左手在上右手在下,而其它地方可能就是右手在上左手在下。

  本文设计的关键是对手势的建模训练,尤其是对待识别的手势的确定。具体的应用决定了采用什么样的手势模式,只有建立准确的手势模型才能利用算法进行对识别到的手势做出正确反馈。通常手势建模和手势识别所使用到的方法是相异的,采集手势特征数据的方法也不一样。目前基于数据手套的特征捕获方法是比较常用的采集数据信息的方式,通过选择相应的识别算法实现手势的识别反馈。

  2.常用手势识别算法分析

  2.1人工神经网络算法

  这种算法还具有抗干扰能力和容错性强识别速度快等优点,它能把预处理和识别的过程同时进行处理。在目前的识别领域中,运用的比较多的神经网络是误差反向传播神经网络(简称网络)。BP神经网络结构图算法是一种有监督式的学习算法,它由三部分构成输入层、中间层(也叫隐藏层)和输出层,其中的输入层和输出层的神经元节点是固定的数目,两层之间存在从输入层到输出层的前馈连接和输出层至输入层的反馈连接,只有隐藏层的神经元是可以自由定义的。

  在人际交互识别领域中应用神经网络算法进行手势的识别时首先需要有自己的数据库系统,再对采集到的手势数据序列进行算法的训练,使用训练好的网络去识别输入的手势数据信息数据的含义即达到识别手势的目的,识别到后经由计算处理以实现人机交互的目的。神经网络的优点是抗干扰性和容错能力强,缺点是训练量比较大,扩充性不强对时序建模能力差,无法有效处理动作的速率带来的问题。

  2.2动态时间规整

  动态时间规整曾是语音识别的一种主流方式,它是一种将时间归整与距离测度结合起来的非线性正则化的技术,算法是建立一套科学的时间校准匹配路径将测试模式和参考模式建立起联系的算法。

  DTW的算法主要利用的动态编程技术(Dynamic Programming,DP)去实现,它的算法实现是将全局的优化分化成众多的局部最优化。所以在使用算法的时候需要将各局部最优化,已达到全部的最优化。

  在DTW算法中由于容易实现和数据的训练简单等优点被用在语音识别中广泛应用,但在手势识别领域由于其运算量太大和较弱的抗噪能力,很难达到对手势识别的实时性的要求。

首页 上一页 12 13 14 15 16 17 下一页 尾页

猜你喜欢

版权所有 Copyright©2006-2024 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com