2.3特征选择
手势识别本质上是对手势进行多分类任务,在实际的实验测试过程中,能够准确区分手部状态是进行手势识别任务的前提条件,且对后续的分类以及检测等任务的精准度至关重要。
比如在进行图像识别过程中,对拍摄到的图像进行特征提取是判别手势的第一步,特征性质的优劣是后续进行图像信息处理的关键,对采集到的数据进行特征提取,提取过程中如果特征过于简单就会造成对图像信息的提取不全,导致最后的判别精确度较低的问题不能满足手势识别对人体手势识别高精确度的要求,而如果不考虑提取到的特征维度问题,容易造成数据维度灾难现象即产生大量的特征数据使计算机无法短时间进行处理,这样不能满足手势识别对于现场实时性的要求。
因为在三维空间中执行的手势是动态的,采集到的加速度和姿态角的数据也是实时变化的,所以对于手势识别的数据是由内嵌在手套中的两个六轴陀螺仪加速度传感器产生的,当手部移动时会产生加速度,角速度姿态角等实时数据信息,处理器通过对传感器识别的运动数据进行采集计算最终识别手势的动作。
三、实验结果测试与分析
1.实验手势
本章主要内容是根据前面内容进行试验,通过实验验证可穿戴智能手套翻译器能够使用改进型的识别算法提高手势的识别率和识别精度。
为验证嵌入式系统对手势手语识别的可行性,在进行试验时候从准备好的手势模型中各取四个进行手势识别试验。开始手势表达时要按箭头的方向做轨迹,同时要求一次性完成动作,不能在动作执行时有停顿,做完每一个手势都要停顿一定时间。
2.实验过程及数据统计
本文所采取的实验方法及过程如下:
首先,实验所用的手势模板是已经定义好了的手势集合,实验时从中选取定义好的手势集。
其次,从手势集合中选取部分手势进行算法识别,在这个过程中逐渐将训练样本数量由少到多增加,观察样本数量对识别率的影响。
最后,使用改进型算法对手势进行识别,同样将样本数量逐渐增多,观察样本数量对手势识别率的影响,将两种算法识别的结果进行对比,比较识别率。
整个识别的流程通常是由以下几步完成的:系统的初始化、检测动作的状态是否开始、记录数据集、检测动作是否结束,模型对比和识别结果,实验的流程图如图所示。
识别动作时最重要的是准确判断手势的开始时刻,因为每一个手势动作通常可能会连续摆动来表达含义,所以在进行动作识别时需要采集传感器信息加速度的变化去判断是否为开始信号,过程是传感器采集到数据时判断是否开始,若是开始信号则开始转换数据进行对手势的识别,当传感器停止传输数据时则表动作结束同时语音播放。
根据实验结果可知手势识别率总体上是随着样本的训练次数增加有微量上升,因此再一次增加样本的训练次数进行实验对比,来确认训练的样本数对识别率的影响,分别选用经过次和次训练的手势,总体上手势的识别率是随着样本训练次数的增加而略有提升,不过达到一定程度之后识别率就基本保持了稳定。
四、研究步骤:
x年x月-x年x月,收集资料,建立模型,
x年x月-x年x月,开发软件,
x年x月-x年x月,教学试验,评价修改,
x年x月-x年x月,扩大试验,归纳总结。
五、参考文献
[1]李强,张然,鲍国东,姜海燕。聋人大学生心理健康状况及相关因素分析[J].中国特殊教育,20xx,02:69-72.
[2]陆德阳。残疾人与近代中国残疾人事业的发展[J].齐鲁学刊,20xx,06:55-58.
[3]王丹蕾,聂桂平。手语翻译设备的发展现状及未来趋势[J].设计,20xx,(19):115-117.
[4]晶茹,刘丽娜。商务沟通中口译人员的跨文化意识培养[J].学周刊,20xx,01:217-219.
[5]贾建锋,潘梦佳,马可心。发达国家本科招生制度经验借鉴与启示--基于美国、英国和日本的多案例研究[J].重庆理工大学学报(社会科学),20xx,11:118-125.
[6]李金,宋阳,梁洪。语言残障患者医疗辅助系统设计[A].中国仪器仪表学会。第九届全国信息获取与处理学术会议论文集Ⅱ[C].中国仪器仪表学会,20xx:4.