返回
首页 > 数学毕业论文
7 页 客服微信号: bylw8com 客服QQ:3346581880

小学生数学小论文15篇【集合】

  在日常学习和工作中,大家都写过论文吧,借助论文可以达到探讨问题进行学术研究的目的。那么你有了解过论文吗?以下是小编精心整理的小学生数学小论文,欢迎阅读,希望大家能够喜欢。

小学生数学小论文15篇【集合】

小学生数学小论文1

  大千世界,无奇不有,如果你做一个有心人,并且善于总结,总能发现它们之间的相互规律。这不,今天,我在做课外习题时,就有了下面一个小发现。

  最近,老师刚给我们讲解了有关等差数列的计算方法,其中最典型的例子为:1+2+3+4+5……+97+98+99+100=?老师讲解的算法为: 1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050,当时,我觉得自己已经听懂了,心想以后碰到这类题目我也可以做了。

  但是,在做到具体习题时,事情的发展并不如我想象的那么简单。今天,我在做习题时就遇到了一只“拦路虎”:1-3+5-7+9……-1999+20xx=?

  咋一看到这道题目,我首先就懵住了,后来,强迫自己冷静下来认真思考,终于理出了一点头绪:这是等差数列,要求出答案,只要把加的部分和减的`部分求出,再求差就行了,即,1-3+5-7+9……-1999+20xx

  =(1+5+9+……+20xx)-(3+7+……+1999)

  但是,在计算1+5+9+……+20xx,以及3+7+……+1999时我犯了难,因为它与老师的例题不相同,此时,我才感觉自己没有真正理解老师讲授的方法,于是我不得不重新学习老师的例题,并竭力回忆老师讲解的过程:1+2+3+4+5……+97+98+99+100=(1+100)*100/2=5050中,该公式的基本算法应该为:(首项+末项)*数列个数/2;对于从1开始的并且数列之间的差为1的数列而言,其数列个数为最大的数,那么,对于不是从1开始,并且数列之间的差不是1的数列如何计算数列的个数呢? 我陷入了迷茫之中。

  这时,爸爸进来了,见我在思考问题,便也加入进来。爸爸循序渐进的启发我:

  1)1、2、3、4…·8、9、10总共有几个数?

  2)2、3、4…·8、9、10总共有几个数?

  3)0、1、2、3、4…·8、9、10总共有几个数?

  4)2、4、6、8、10总共有几个数?

  5)6、8、10总共有几个数?

  在我计算出结果后,爸爸又要求我分析它们之间的规律,并用公式来表达计算结果:

  经过好一会儿的脑力激荡,我终于理清了头绪,找出了计算数列个数的基本公式:即,

  数列个数=(末项-首项+差)/差,

  采用该公式,可以验算上面几道题的计算结果:

  1)1、2、3、4…·8、9、10的个数=(10-1+1)/1=10

  2)2、3、4…·8、9、10的个数=(10-2+1)/1=9

  3)0、1、2、3、4…·8、9、10的个数=(10-0+1)/1=11

小学生数学小论文2

  一、对离散数学的理解

  由于《离散数学》是一门数学课,且是由几个数学分支综合在一起的,内容繁多,非常抽象,因此即使是数学系的学生学起来都会倍感困难,对计算科学专业的学生来说就更是如此。大家普遍反映这是大学四年最难学的一门课之一。离散数学是计算机科学基础理论的核心课程之一,是计算机及应用、通信等专业的一门重要的基础课。它以研究量的结构和相互关系为主要目标,其研究对象一般是有限个或可数个元素,充分体现了计算机科学离散性的特点。学习离散数学的目的是为学习计算机、通信等专业各后续课程做好必要的知识准备,进一步提高抽象思维和逻辑推理的能力,为计算机的应用提供必要的描述工具和理论基础。

  1、定义和定理多

  离散数学是建立在大量定义、定理之上的逻辑推理学科,因此对概念的理解是学习这门课程的核心。在学习这些概念的基础上,要特别注意概念之间的联系,而描述这些联系的实体则是大量的定理和性质。在考试中有一部分内容是考查学生对定义和定理的识记、理解和运用,因此要真正理解离散数学中所给出的每个基本概念的真正的含义。比如,命题的定义、五个基本联结词、公式的主析取范式和主合取范式、三个推理规则以及反证法;集合的五种运算的定义;关系的`定义和关系的四个性质;函数(映射)和几种特殊函数(映射)的定义;图、完全图、简单图、子图、补图的定义;图中简单路、基本路的定义以及两个图同构的定义;树与最小生成树的定义。掌握和理解这些概念对于学好离散数学是至关重要的。

 1 2 3 4 5 6 下一页 尾页

猜你喜欢

版权所有 Copyright©2006-2024 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com