学生:(7+8)÷(8-7)=15(个)
树:8×15-7=113(棵)或者15×7+8=113(棵)
答案不就出来了吗?有15个学生,一共要植树113棵。
这认真想,还就有了思路和兴趣了,我便“唰唰唰”地往下做:鼓号队同学排队,如果每行站8人,则多24人;如果每行站9人,则多4人,问一共站多少行?有多少个学生?同样的.思路,求出两种分配的总差额为24-4=20(人),再运用公式得到:
行数:(24-4)÷(9-8)=20(行)
学生:20×8+24=184或者20×9+4=184(人)
我越做越高兴,自己能解出这么多难题,并得到一个重要的公式:总差额÷个体差=个数,以后可以更好的运用来解难题。
做着做着,我渐渐悟到:其实做难题并不难。
“照相啦!照相啦!”熊爸爸扯开嗓门叫了起来。听到爸爸的叫声小熊们立马闻声飞奔过来。小熊们排好队伍准备照相,有5只小熊排成一排,分别是:熊大、熊二、熊三、熊四和熊五。但是熊大不愿站两边,熊三也不想站中间,这时熊爸爸提了个问题,请小熊们想想有多少种排法。小熊们都陷入了沉思……
熊二很认真地开始考虑爸爸的.提问,它想先考虑熊大不站两边的情况,应该有:(4×3×2×1)×3=72种,再考虑熊三不站中间的情况,这下熊二纳闷了,熊三在考虑熊大时排列过了,分不清熊三还有多少种排法,只好重新考虑。熊二又陷入了沉思:那我先算剩下的三只小熊,再去考虑熊大和熊三,应该是:3×2×1=6种,然后熊大还有5—2=3种选择,加上熊三还有5—1=4种选择,还是不对,如果当熊大站在第二或第四位置的时候,熊三只有3种选择,也就是说不能直接用上述的这些方法来排列小熊拍照的顺序。熊二思考了许久,能否把这两种情况分开计算再相加。因为熊大不能站在两边,所以有三种可能即第2个位置、第3个位置和第4个位置,熊大站在第2个位置时熊三有3种排法,其它小熊有3×2×1=6种变化,计算得3×3×2×1=18种;当第4个位置与第2个位置情况一致所以也是18种排法;当熊大站在第3个位置时熊三有4种排法。其它小熊同样有3×2×1=6种排法,计算得4×3×2×1=24,把这三种情况相加可得24+18+18=60,熊二把自己的想法告诉了熊爸爸,熊爸爸认真地考虑了一下,猛地点了点头,根据熊二的方法,小熊们排好队美美地拍了一张合影。
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的`千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”
其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
今天的内容就介绍到这里了。
快要过年了,妈妈准备买一盒巧克力送给亲戚。我们来到了超市。可是,巧克力品种多价格又多,包装也十分精美,真是让人眼花缭乱。最后,我们决定在费列罗中挑一盒。有一盒巧克力是16颗装44.8元的,另外一盒巧克力是3颗装8.6元的.,还有一盒巧克力是24颗装70元的。