4、 内在联系性
离散数学的'三大体系虽然来自于不同的学科,但是这三大体系前后贯通,形成一个有机的整体。通过认真的分析可寻找出三大部分之间知识的内在联系性和规律性。如:集合论、函数、关系和图论,其解题思路和证明方法均有相同或相似之处。
5、知识点集中,概念和定理多
《离散数学》是建立在大量概念之上的逻辑推理学科,概念的理解是我们学习这门学科的核心。不管哪本离散数学教材,都会在每一章节列出若干定义和定理,接着就是这些定义定理的直接应用。掌握、理解和运用这些概念和定理是学好这门课的关键。要特别注意概念之间的联系,而描述这些联系的则是定理和性质。
二、对离散数学的建议
数理逻辑、集合论、代数系统、图论是《离散数学》在教学过程中,应穿插介绍一些知识点在计算机科学中的应用,将之与离散数学理论结合介绍给学生,使学生重视这一课程的学习,产生学习兴趣,主动地进行学习。这将有利于学生理解理论知识,又为后续课程的学习奠定基础。 在学习《离 散数学》的过程,对概念的理解是学习的重中之重。一般来说,由于这些概念(定义)非常抽象(学习《线性代数》时会有这样的经历),往往不能在脑海中建立起它们与现实世界中客观事物的联系。这是《离散数学》学习过程中要面临的第一个困难,觉得不容易进入学习的状态。因此一开始必须准确、 全面、完整地记住并理解所有的定义和定理。具体做法是在进行完一章的学习后,用专门的时间对该章包括的定义与定理实施强记。只有这样才可能本课程的抽象能够适应,并为后续学习打下良好的基础。 离散数学中一些概念很容易混淆,个人比较喜欢总结一些东西的共同和不同,虽然有时是两个不相干的概念从而导致自己陷入牛角尖。但从中确实收获不少。在教学过程中,如能充分比较的方法,讲清它们的共同点和不同点,能让我们加深对概念的理解,从而避免判断的错误。
总结
在一学期的学习中,离散基本知识已经掌握,但是深入的学习还是有些困难,老师的指导已经足够明确,在接下来的学习中主要靠自己的参悟和不懈努力去上更高的一层楼,谢谢老师。
花花是一只可爱的小猪。有一天,它的妈妈叫它去买瓶酱油,烧红烧肉,于是它高高兴兴地跑出了家门……
可是,当他来到超市门口时,它惊呆了,超市门口有一块牌子:
(6+3x)÷6=6 运用等式的性质来做
不然不给进
“哎呀,怎么做呢?晚回家妈妈会骂的!”花花绞尽脑汁想。它心想:如果我平常认真听课,好好学习,就不会这样了呀!!
这时,花花的同班同学方方看见了远远地花花似乎有烦恼,方方是它们班的`班长,解方程是它们班最拿手的了,它走到了花花旁边,看见了那块牌子,对花花说:“这道题简单,我来!”于是,方方拿起了笔,在牌上写道:
解:(6+3x)÷6×6=6×6……方程两边同时乘以6
6+3x=36
6+3x——6=36——6……方程两边同时减去6
3x=30
3x÷3=30÷3 ……方程两边同时除以3
x=10
“你看,如果要验算,我们还可以这样:因为我们算出来是10 ,所以我们还可以把它代入原方程里:(6+3×10)÷6=6,这样我们就确保对了。”
这时候,超市的门徐徐打开,花花买好了酱油,付了帐,哼着小曲儿,高高兴兴地回家了。因为,它今天又帮妈妈做了事,还补到了自己没学到的地方呀!
大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。
我的肚子莫名其妙地奏起了狂响曲,“好饿啊——”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的',我的心里升起了一股力量,恩,我一定要做给你看!一定!