三、多鼓励学生
鼓励、表扬学生的正确行为,会让尚不能明确分辨是非的小学生清楚意识到自己的行为是非常正确的,是应该继续坚持的。鼓励学生是老师在开展教学工作中常用的一种教育方法,它既能促进小学生的身心健康发展,又能拉近学生与老师间的距离,为师生间的思想沟通架起一座信任的大桥。鼓励也是一门艺术,要在恰当的实际恰当的使用。鼓励不能盲目鼓励,比如学生在做毫无意义的事情,老师却去鼓励他,这是不正确的。鼓励,是对正确行为的一种肯定。某学生今天表现很好,以往上课爱讲话的他今天一句话也没有讲,一直认认真真的听课。这时老师就可以表扬、鼓励,在课堂上鼓励他,他感受到其余同学们羡慕的目光,会很光荣,很有成就感,从而一直保持着今天的状态,认真学习,不仅成绩提高了,同时也拉近了学生与老师的距离,方便老师更好的开展教学工作。
=20xx分之20xx
啊!终于算出来了!在我伸懒腰时,脑子里又有一个“亮点”,也可以反过来用20xx又20xx分之20xx:
=1÷(20xx又20xx分之20xx÷20xx)
=1÷(20xx÷20xx+2006分之20xx÷20xx)
“照相啦!照相啦!”熊爸爸扯开嗓门叫了起来。听到爸爸的叫声小熊们立马闻声飞奔过来。小熊们排好队伍准备照相,有5只小熊排成一排,分别是:熊大、熊二、熊三、熊四和熊五。但是熊大不愿站两边,熊三也不想站中间,这时熊爸爸提了个问题,请小熊们想想有多少种排法。小熊们都陷入了沉思……
熊二很认真地开始考虑爸爸的提问,它想先考虑熊大不站两边的情况,应该有:(4×3×2×1)×3=72种,再考虑熊三不站中间的情况,这下熊二纳闷了,熊三在考虑熊大时排列过了,分不清熊三还有多少种排法,只好重新考虑。熊二又陷入了沉思:那我先算剩下的三只小熊,再去考虑熊大和熊三,应该是:3×2×1=6种,然后熊大还有5—2=3种选择,加上熊三还有5—1=4种选择,还是不对,如果当熊大站在第二或第四位置的时候,熊三只有3种选择,也就是说不能直接用上述的这些方法来排列小熊拍照的'顺序。熊二思考了许久,能否把这两种情况分开计算再相加。因为熊大不能站在两边,所以有三种可能即第2个位置、第3个位置和第4个位置,熊大站在第2个位置时熊三有3种排法,其它小熊有3×2×1=6种变化,计算得3×3×2×1=18种;当第4个位置与第2个位置情况一致所以也是18种排法;当熊大站在第3个位置时熊三有4种排法。其它小熊同样有3×2×1=6种排法,计算得4×3×2×1=24,把这三种情况相加可得24+18+18=60,熊二把自己的想法告诉了熊爸爸,熊爸爸认真地考虑了一下,猛地点了点头,根据熊二的方法,小熊们排好队美美地拍了一张合影。
花花是一只可爱的小猪。有一天,它的妈妈叫它去买瓶酱油,烧红烧肉,于是它高高兴兴地跑出了家门……
可是,当他来到超市门口时,它惊呆了,超市门口有一块牌子:
(6+3x)÷6=6 运用等式的`性质来做
不然不给进
“哎呀,怎么做呢?晚回家妈妈会骂的!”花花绞尽脑汁想。它心想:如果我平常认真听课,好好学习,就不会这样了呀!!
这时,花花的同班同学方方看见了远远地花花似乎有烦恼,方方是它们班的班长,解方程是它们班最拿手的了,它走到了花花旁边,看见了那块牌子,对花花说:“这道题简单,我来!”于是,方方拿起了笔,在牌上写道:
解:(6+3x)÷6×6=6×6……方程两边同时乘以6
6+3x=36
6+3x——6=36——6……方程两边同时减去6
3x=30
3x÷3=30÷3 ……方程两边同时除以3
x=10
“你看,如果要验算,我们还可以这样:因为我们算出来是10 ,所以我们还可以把它代入原方程里:(6+3×10)÷6=6,这样我们就确保对了。”
这时候,超市的门徐徐打开,花花买好了酱油,付了帐,哼着小曲儿,高高兴兴地回家了。因为,它今天又帮妈妈做了事,还补到了自己没学到的地方呀!