二、提高职业高中数学教学效率的应对策略
1.针对学生数学知识基础差,学习能力弱,应实施因材施教,分层教学策略
针对职业高中学生结构层次不齐的特点,在入学时,通过学情测试,生源情况的调查摸底等方式,了解学生的基础状况,并根据学生的选学专业与期望信息,结合办学的特点、机制、目标,通过分班、专业意向等方式进行大致的分类,使学生的知识结构和能力结构尽可能低趋于一致。对不同知识结构和能力结构的学生实施基础知识和能力的查漏补缺、因材施教、分层教学。帮助学生树立学习勇气和自信,通过在学习过程中主动参与教学活动,体验独立解决问题后收获的.成功与愉悦,强化自信力,消除学习的畏惧心理;消除“听不懂、学不会”错误意识支配,促进数学基础知识的建构和学习能力的形成,并使之形成长期坚持学习的习惯和意志品质,确保能够顺利接受后续的学习任务,逐步提高数学教学效率。
2.诱发并强化学生学习动机、培养学习兴趣和目的策略
教师在教学中不但要用数学文化来感染和熏陶学生的思想情操,而且要通过适度降低问题难度起点、巧妙化解和突破教学难点,使学生能够清楚地感觉到自己较容易掌握数学知识和思维方法,通过“思考与讨论”、“探索与研究”、多媒体的教学软件的使用与练习“等多种教学形式发展和强化数学思维素养,逐步树立学习兴趣和目的。同时教师应将数学教学与专业教学相融合,尽可能地将数学知识和内容、思维方法与学生所选专业联系起来,创设贴近生活实际、贴近专业技能实际的问题情景,逐步诱发并强化学生学习动机、培养学生用数学的知识和方法解决生活、生产技术上的难题,体验数学学科的无穷魅力。
一、进一步深入理解函数概念
初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合A(定义域)到集合B(值域)上的映射?:AB,使得集合B中的元素y=ax2+bx+c(a0)与集合A的元素X对应,记为?(x)= ax2+ bx+c(a0)这里ax2+bx+c表示对应法则,又表示定义域中的元素X在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:
类型I:已知?(x)= 2x2+x+2,求?(x+1)
这里不能把?(x+1)理解为x=x+1时的函数值,只能理解为自变量为x+1的函数值。
类型Ⅱ:设?(x+1)=x2-4x+1,求?(x)
这个问题理解为,已知对应法则?下,定义域中的元素x+1的象是x2-4x+1,求定义域中元素X的象,其本质是求对应法则。
一般有两种方法:
(1)把所给表达式表示成x+1的多项式。
?(x+1)=x2-4x+1=(x+1)2-6(x+1)+6,再用x代x+1得?(x)=x2-6x+6
(2) 变量代换:它的适应性强,对一般函数都可适用。
令t=x+1,则x=t-1 (t)=(t-1)2-4(t-1)+1=t2-6t+6从而?(x)= x2-6x+6
二、二次函数的单调性,最值与图象。
在高中阶阶段学习单调性时,必须让学生对二次函数y=ax2+bx+c在区间(-,-b2a ]及[-b2a ,+) 上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。
类型Ⅲ:画出下列函数的图象,并通过图象研究其单调性。
(1)y=x2+2|x-1|-1
(2)y=|x2-1|
(3)= x2+2|x|-1
这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。
类型Ⅳ设?(x)=x2-2x-1在区间[t,t+1]上的最小值是g(t)。
求:g(t)并画出 y=g(t)的`图象
解:?(x)=x2-2x-1=(x-1)2-2,在x=1时取最小值-2
当1[t,t+1]即01,g(t)=-2
当t1时,g(t)=?(t)=t2-2t-1
当t0时,g(t)=?(t+1)=t2-2
t2-2, (t0)
g(t)= -2,(01)
t2-2t-1, (t1)
首先要使学生弄清楚题意,一般地,一个二次函数在实数集合R上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。