二元光学元件的设计问题十分类似于光学变换系统中的相位恢复问题:已知成像系统中入射场和输出平面上光场分布,如何计算输入平面上相位调制元件的相 位分布,使得它正确地调制入射波场,高精度地给出预期输出图样,实现所需功能。
近几年来,随着制作工艺水平的发展和衍射元件应用领域的扩展,二元光学元件 特征尺寸进一步缩小,其设计理论已逐渐从标量衍射理论向矢量衍射理论发展。通常情况下,当二元光学元件的衍射特征尺寸大于光波波长时,可以采用标量衍射理 论进行设计。
计算全息就是利用光的标量衍射理论和傅里叶光学进行分析的,关于二元光学元件衍射效率与相位阶数之间的数学表达式也是标量衍射理论的结果。在 此范围内,可将二元光学元件的设计看作是一个逆衍射问题,即由给定的入射光场和所要求的出射光场求衍射屏的透过率函数。
二元光学元件的特征 尺寸为波长量级或亚波长量级,刻蚀深度也较大(达到几个波长量级),标量衍射理论中的假设和近似便不再成立,此时,光波的偏振性质和不同偏振光之间的相互 作用对光的衍射结果起着重大作用,必须发展严格的矢量衍射理论及其设计方法。
矢量衍射理论基于电磁场理论,须在适当的边界条件上严格地求解麦克斯韦方程 组,已经发展几种有关的设计理论,如积分法、微分法、模态法和耦合波法。前两种方法虽然可以得到精确的结果,但是很难理解和实现,并需要复杂的数值计算; 比较起来,模态法和耦合波法的数学过程相对简单些,实现也较容易
3.2二元光学器件的制作工艺
二元光学元件的基本制作工艺是超大规模集成电路中的微电子加工技术。但是,微电子加工属薄膜图形加工,主要需控制的是二维的薄膜图形;而二元光学元件则是一种表面三维浮雕结构,需要同时控制平面图形的精细尺寸和纵向深度,其加工难度更大。
近几年来,在VLSI加工技术、电子、离子刻蚀技术发展的推动 下,二元光学制作工艺方面取得的进展集中表现在:从二值化相位元件向多阶相位元件、甚至连续分布相位元件发展;从掩模套刻技术向无掩模直写技术发展。最早的二元光学制作工艺是用图形发生器和VLSI技术制作二阶相位型衍射光学元件。
随着高分辨率掩模版制作技术的发展,掩模套刻、多次沉积薄膜的对中精度的提高,可以制作多阶相位二元光学元件,大大提高了衍射效率。但是离散化的相位以及掩模的对准误差,仍影响二元光学元件的制作精度和衍射效率的提高。由直写技术的应用,省去掩模制作工序,直接利用激光和电子束在基底材料上写入所需的二维或三维浮雕图案。利用这种直写技术,通过控制电子束在不同位置处的曝光量,或调制激光束强度,可以刻蚀多阶相位乃至连续分布的表面浮雕结构。
无掩模直写技术较适于制作单件的二元或多阶相位元件,或简单的连续轮廓,而利用激光掩模和套刻制作更适合于复杂轮廓和成批生产。在掩模图案的刻蚀技术中,主要采用高分辨率的反应离子刻蚀、薄膜沉积技术。其中离子束刻蚀的分辨率高达0.1μm,且图案边缘陡直准确,是一种较为理想的加工手段。
4、结束语:
随着二元光学技术的发展,二元光学器件已经广泛用于光学传感、光通信、光计算、数据存储等诸多领域。这种技术的应用使得很多领域得到了快速的发展,为社会的进步做出了很大贡献。总之,我国的发展要依靠科技的进步,所以国家还要进一步的发展科技,最终实现我国社会主义现代化建设的伟大宏愿。