经济学中的数学意义
意义是一个汉语词语,一指人或事物所包含的思想和道理;二指内容,三指美名、声誉;四指作用;五指价值。以下是小编为大家整理的经济学中的数学意义,仅供参考,欢迎大家阅读。
数学意义:
改革开放以来,西方经济学作为市场经济运行描述的基本理论,对我们经济学学习和研究的作用越来越重要。从学习和研究的角度看,似乎可以明显感觉到,西方经济学(本文中主要指新古典(综合)主义经济学)的理论体系、思维方式和推理方式的深刻特点之一表现在其数学性方面,也正是这一特征使人们常常把经济学看成是最接近自然科学的社会科学学科。因此,对一般数学的意义、数学与理论的科学性、数学在经济学研究中的意义和具体作用、及数学的限制等基本问题的深入思考,将有助于我们进一步认识和把握西方经济学的基本思想和理论特征,更好地学习、借鉴和认识西方经济学。
一、数学与理论的科学性
众所周知,数学作为一个独立的知识体系起源于古希腊,两千多年特别从牛顿时代以来,数学及其具体应用——自然科学取得了辉煌的成就。长期以来人们习惯认为,能充分应用数学的学科或领域等价于科学,数学所显示出的人类理性能力、根源和力量在诸多自然科学领域也似乎得到了完美的体现。这自然使人们猜想,为什么不能把数学方法应用到社会学科领域去寻求其真理呢?西方经济学也许正是这种猜想的一个主要结果或实验。数学究竟能给经济学带来什么呢?在进一步分析经济学中数学的意义之前,我们应先来概略了解一下几个数学基础问题。
1、数学是什么?
简单回答这个问题是十分抽象的。例如若干著名学者认为,“纯数学的对象是现实世界的空间形式和数量关系”。数学“是研究抽象结构的科学““数学是结构及其模型的科学”等等。数学在理论上的概括和科学的实际发展中,一般给人们的印象是,与其他学科相比,数学的特点可归结为更高度的抽象性、更严密的逻辑性和更广泛的应用性。因此,说数学是一切科学的根本基础,是科学的皇后,是十分自然的。
稍具体说,首先,数学概念是抽象的典范,几乎它的所有基本概念在现实世界中是找不到的,例如,点、线、面;自然数、实数、虚数和四元数等等;它们是抽象的,又是深刻的,极其奇妙地、精确地刻画自然事物的某种基本特征。其次,数学是严密逻辑推理的象征,其方法论的核心是演绎法,即从不证自明的公理出发进行演绎推理;其实质含义是,若公理为真,则可保证其演绎的结论为真;从逻辑上看,演绎法是清晰、合理和完美的,由数学推出的显然是毋庸置疑的正确结论。最后,由上面两点,数学应用的广泛性是不言自明的。
人的认识是无止境的,由于数学在科学发展中至高无上的地位,人们自然要进一步问,数学是绝对真理吗?亦即数学的抽象性是绝对无误的吗?数学的严密逻辑性是绝对可靠的吗?数学应用的广泛性是无限的吗?稍考察一下数学发展的历史可以看出,人们在这个问题的认识是不断变化发展的。
2、数学的真理性问题
十九世纪二十年代之前,数学的发展是顺利的,人们对于数学的真理性是确认的。特别是十五~十八世纪,数学的顺利发展达到高峰;这一时期一大批数学家同时在在数学和自然科学方面做出了惊人的成就,如哥白尼、开普勒、伽里略、笛卡尔、惠更斯和牛顿等。他们从许多方面证明了自然界的一些现象与数学定律相吻合,最突出是牛顿力学;所有这些极大地加强了数学作为绝对真理的信念,人们相信上帝设计了宇宙,而数学的作用就是揭示出这些设计。
然而十九世纪二十年代非欧几何的提出和集合论中悖论的出现,使整个科学界震动,它迫使数学家们从根本上改变了对数学性质的认识,以及数学和物质世界关系的理解,由此引出数学巨人之间关于数学基础的新数学方法而展开激烈的争论。如由弗雷格、罗素和怀特海为代表的逻辑主义认为,逻辑法则是一个真理体系,而所有的数学是可以由逻辑推导出来。同一时期,以克罗内克、鲍莱尔、彭家勒和贝尔为代表的直觉主义却认为,从逻辑原理所推导出来的东西,不比直觉感悟的更可信,数学可能是从经验开始的,但并不真正源于经验,而是来源于心智(经验只是唤醒心智)。第三大派系大卫·希尔伯特领导的形式主义认为,数学实际上是一些形式系统,各有各自的概念,各自的公理,各自的推导定理的法则,以及各自的定理,把每个演绎系统发展起来,就是数学。最后是以策梅罗、弗兰克尔为代表的集合论公理化学派,他们把解决悖论的方法寄托于集合论的公理化,即对所容许的集合类型加以限制,同时又使它们有充分的性质作为一切数学分析的基础。