分析电力系统自动化的论文
电力系统是一个巨维数的典型动态大系统,它具有强非线性、时变性且参数不确切可知,并含有大量未建模动态部分。电力系统地域分布广阔,大部分元件具有延迟、磁滞、饱和等等复杂的物理特性,对这样的系统实现有效控制是极为困难的。另一方面,由于公众对新建高压线路的不满情绪日益增加,线路造价,特别是走廊使用权的费用日益昂贵等客观条件的限制,以及电力网的不断增大,使得人们对电力系统的控制提出了越来越高的要求。正是由于电力系统具有这样的特征,一些先进的控制手段不断地引入电力系统。本文回顾了模糊控制、神经网络控制、专家系统控制、线性最优控制、综合智能控制等五种典型智能技术在电力系统中的运用。
一、模糊控制
模糊方法使控制十分简单而易于掌握,所以在家用电器中也显示出优越性。建立模型来实现控制是现代比较先进的方法,但建立常规的数学模型,有时十分困难,而建立模糊关系模型十分简易,实践证明它有巨大的优越性。模糊控制理论的应用非常广泛。例如我们日常所用的电热炉、电风扇等电器。这里介绍斯洛文尼亚学者用模糊逻辑控制器改进常规恒温器的例子。电热炉一般用恒温器(thermostat)来保持几挡温度,以供烹饪者选用,如60,80,100,140℃。斯洛文尼亚现有的恒温器在100℃以下的灵敏度为±7℃,即控制器对±7℃以内的温度变化不反应;在100℃以上,灵敏度为±15℃。因此在实际应用中,有两个问题:①冷态启动时有一个越过恒温值的跃升现象;②在恒温应用中有围绕恒温摆动振荡的问题。改用模糊控制器后,这些现象基本上都没有了。模糊控制的方法很简单,输入量为温度及温度变化两个语言变量。每个语言的论域用5组语言变量互相跨接来描述。因此输出量可以用一张二维的查询表来表示,即5×5=25条规则,每条规则为一个输出量,即控制量。应用这样一个简单的模糊控制器后,冷态加热时跃升超过恒温值的'现象消失了,热态中围绕恒温值的摆动也没有了,还得到了节电的效果。在热态控制保持100℃的情况下,33min内,若用恒温器则耗电0.1530kW·h,若用模糊逻辑控制,则耗电0.1285kW·h,节电约16.3%,是一个不小的数目。在冷态加热情况下,若用恒温器加热,则能很快到达100℃,只耗电0.2144kW·h,若用模糊逻辑控制,达到100℃时需耗电0.2425kW·h。但恒温器振荡稳定到100℃的过程,耗电0.1719kW·h,而模糊逻辑控制略有微小的摆动,达到稳定值只耗电0.083kW·h。总计达100℃恒温的耗电量,恒温器需用0.3863kW·h,模糊逻辑控制需用0.3555kW·h,节电约15.7%。
二、神经网络控制
人工神经网络从1943年出现,经历了六、七十年代的研究低潮发展到现在,在模型结构、学习算法等方面取得了大量的研究成果。神经网络之所以受到人们的普遍关注,是由于它具有本质的非线性特性、并行处理能力、强鲁棒性以及自组织自学习的能力。神经网络是由大量简单的神经元以一定的方式连接而成的。神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。目前神经网络理论研究主要集中在神经网络模型及结构的研究、神经网络学习算法的研究、神经网络的硬件实现问题等。
三、专家系统控制
专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用,但仍存在一定的局限性,如难以模仿电力专家的创造性;只采用了浅层知识而缺乏功能理解的深层适应;缺乏有效的学习机构,对付新情况的能力有限;知识库的验证困难;对复杂的问题缺少好的分析和组织工具等。因此,在开发专家系统方面应注意专家系统的代价/效益分析方法问题,专家系统软件的有效性和试验问题,知识获取问题,专家系统与其他常规计算工具相结合等问题。