1.2电气工程自动化的基本概念
电气工程与自动化技术涵盖了电子电气技术以与计算机技术,电气工程自动化现阶段主要被应用于工业生产。其特性即自动化的体系与相关理念。自动化的理念与技术体系是工业与生产制造领域的核心技术。但是,伴随市场经济的全面发展,常规的电气工程与自动化技术已无法满足于市场需求,进而深化原技术已成为大势所趋,而智能化技术的广泛应用是深化电气工程自动化的先决条件。因此,为了有效的匹配于市场需求,促进电气工程自动化的发展,智能化技术的应用已成为大势所趋。
2、电气工程自动化的智能化技术应用
2.1故障分析
电气工程自动化运行环节,一些设施无可避免会发生故障问题,而智能化技术可以对电气设施故障予以实时测检。我们都知道电气设施故障可能会造成连锁反应,针对此情况能够通过智能化技术对电气设施予以整体测检,辅助工作者第一时间实施维护,进而有效处理设施故障。常规的人工检测无法评定故障因素,但是通过智能化技术就能够根据实际情况去明确故障因素,在此基础上缩小故障范围,进而找到故障因素,这在一定程度上节约了检测耗时。
2.2智能化技术控制
目前智能化技术在很多领域都可以满足其自身需求,同样适用于电气自动化控制。智能化应用于电气工程自动化运行,可以深化电气系统智能控制,智能技术在电气工程自动化中的有效应用,满足了电气工程自动化智能控制的需求,深化了无人操作化及远程化的发展。智能化技术应用范围涵盖了实时处理及采集电气系统撒气量、开关量数据,监督各种电气系统与设施运行情况等,同时可以予以在线诊断。
2.3完善设计
对电气设施予以完善的设计即电气工程自动化控制的核心构成因子,电气设施的设计环节具有繁琐的特性,且涵盖了很多学科的知识内容,其中有电气、电路以及磁力等学科,常规的手工设计举措在方案调整环节会存在一定的困难。伴随计算机自动化技术的全面发展,常规的手工设计已被计算机设计所代替,现阶段的设计基本都依附于CAD技术和计算机辅助软件,不但缩减了产品的周期,且有效控制了产品的投资,折让国内产品设计的品质有了质的飞越。
2.4可编程逻辑控制技术的应用
众所周知,电气工程自动化设备是较为常用的一类工业设施,对电气工程自动化设备予以按时的安全性检测是企业安全运行的有力保障,因为电气工程自动化设备存在运输安装繁琐的特性,所以可靠性一般性检测通常要在工程现场进行。若依附于以往的人工操作,那么检测则无法达到十分精准,更无法满足当今安全检测的相关需要。因此检测装置要方便接线,方便携带、可靠性高,控制灵活。而可编程逻辑控制技术能够达到上述的相关需要。近年来国内科技已趋于世界的前沿,可编程逻辑控制技术也被应用于很多行业,在机电控制方面意义深远。所以,能够通过可编程逻辑控制技术达到电气工程对于电力运行的一系列需要,更好地匹配于电力生产,因此深化控制电气工程自动化运营。可编程逻辑控制软继电设备在很大程度上可以代替电气工程系统实物元件的应用,可编程逻辑控制技术可以使供电系统自动切换,完善了电气工程供电系统的稳定性及可靠性。所以,相关系统要持续拓展可编程逻辑控制技术在电气工程领域的应用,因此从根本控制电气工程的稳定运营。
3、结论
综上所述,自动化的理念与技术体系是工业与生产制造领域的核心技术。但是,伴随市场经济的全面发展,常规的电气工程与自动化技术已无法满足于市场需求,进而深化原技术已成为大势所趋,而智能化技术的广泛应用是深化电气工程自动化的先决条件。因此,为了有效的匹配于市场需求,促进电气工程自动化的发展,智能化技术的应用已成为大势所趋。在智能化技术应用方面,我们都知道电气设施故障可能会造成连锁反应,针对此情况能够通过智能化技术对电气设施予以整体测检,辅助工作者第一时间实施维护,进而有效处理设施故障。智能化应用于电气工程自动化运行,可以深化电气系统智能控制,智能技术在电气工程自动化中的有效应用,满足了电气工程自动化智能控制的需求,深化了无人操作化及远程化的发展。伴随计算机自动化技术的全面发展,常规的手工设计已被计算机设计所代替,现阶段的设计基本都依附于CAD技术和计算机辅助软件,不但缩减了产品的周期,且有效控制了产品的投资。通过可编程逻辑控制技术达到电气工程对于电力运行的一系列需要,更好地匹配于电力生产,因此深化控制电气工程自动化运营。可编程逻辑控制软继电设备在很大程度上可以代替电气工程系统实物元件的应用,可编程逻辑控制技术可以使供电系统自动切换,完善了电气工程供电系统的稳定性及可靠性。