3 安全方案
基于信息安全等级保护二级要求落实安全措施的要求,结合本系统的具体需求,在系统设计时,应重点考虑应用安全、数据安全和网络安全三个方面。
4.1 应用安全
应用安全是信息系统整体防御的最后一道防线。在应用层面运行着信息系统的基于网络的应用以及特定业务应用。基于网络的应用是形成其他应用的基础,包括消息发送、web浏览等,可以说是基本的应用。业务应用采纳基本应用的功能以满足铁路物资管理信息系统的要求。由于各种基本应用最终是为业务应用服务的,因此对应用系统的安全保护最终就是如何保护系统的各种业务应用程序安全运行。
4.2 数据安全
系统处理的各种数据(用户数据、系统数据、业务数据等)在维持系统正常运行上起着至关重要的作用。一旦数据遭到破坏(泄漏、修改、毁坏),都会在不同程度上造成影响,从而危害到系统的正常运行。由于物资应用大数据管理系统的各个层面(网络、主机、应用等)都对各类数据进行传输、存储和处理等,因此,对数据的保护需要物理环境、网络、数据库和操作系统、应用程序等提供支持。各个“关口”把好了,数据本身再具有一些防御和修复手段,必然将对数据造成的损害降至最小。另外,数据备份也是防止数据被破坏后无法恢复的重要手段,而硬件备份等更是保证系统可用的重要内容。
4.3 网络安全
网络安全为物资应用大数据管理系统在网络环境的安全运行提供支持。一方面,确保网络设备的安全运行,提供有效的网络服务,另一方面,确保在网上传输数据的保密性、完整性和可用性等。该系统纳入铁路总公司、铁路局网络和信息安全保障体系中。
4.4 关键技术
大数据并非一项新技术,其前身是商务智能BI,是一系列信息技术的集合。怎样将数据中的价值挖掘出来,并以直观、清晰地方式展现在人们面前,是大数据解决的基本问题。数据展现通过借助表格、图片等手段,揭示隐藏在数据背后的模式与数据之间的关联关系,它以简单、友好的方式将这种关系呈现给用户,可以有效地提升数据的使用效率。该系统包括数据采集、数据管理、计算处理、数据分析和数据展现5个技术环节。
数据存储是大数据时代需要解决的重要问题。目前,铁路物资系统保存了大量的结构化数据,然而亟待解决的是海量半结构化和非结构化数据的存储问题。非结构化的数据主要采用对象存储系统或分布式文件系统进行存储,本文采用Hadoop分布式文件系统。Hadoop基于一种开源的理念实现的分布式文件系统;半结构化数据可以使用NoSQL数据库HBase中存放;结构化数据存放在关系型数据库Oracle或SQL Server中。HDFS(Hadoop Distributed FileSystem)是Hadoop的核心模块之一,具有如下特点:
在一个多节点块集群存储文件;在节点间复制模块;主从架构;没有文件更新;一次写,多次读;大数据块顺序读模式;为批处理设计。大数据时代的数据有以下几个特征:大体量(Volume)、多样性(Variety)、大价值(Value)、时效性(Velocity)、准确性(Veracity)的5V特点。常规的数据分析仅仅是对己有数据的静态分析,并不能进行动态的预测,而物资系统要求动态实时的反应生产实际,所以该系统大数据分析的难点是动态化、多维化和深度化。适用于大数据的技术,包括大规模并行处理(Mpp)数据库,数据挖掘电网,分布式文件系统,分布式数据库,云计算平台,互联和可扩展的存储系统。
4 结语
5.1 实施策略
大数据平台的建设工作量大、周期长、涉及部门多,系统的实施应遵循统一指挥、统一规划的原则,系统实施过程采用分步建设、试点先行的原则,在明确分工的基础上,大力协同,科学实施,确保各项工作的有序推进。
5.2 项目实施组织
成立物资应用大数据管理信息系统项目工作组,按照本方案有序推进实施工作。项目工作组负责总体指导和统筹协调,解决系统工程建设中的重大问题,确保按统一规划和建设标准进行实施;协调设计单位、相关接口系统的设计开发单位、业务处室和站段直接的分工协作。
成立专家组负责业务指导和技术把关,为项目开发和实施过程中出现的问题提供咨询支持。成立项目总体组,负责项目总体设计、进行任务分工、把握项目进度、协调项目组内部工作等,下设数据组、软件开发组与实施组、质量保证组。