返回
首页 > 工商管理
12 页 客服微信号: bylw8com 客服QQ:3346581880

  一、数字挖掘的基本概念探究

  数据挖掘可以实现用户的信息资源的相互交流和传递。同时数字挖掘技术的应用,对于信息传递的流程存在着专门的定义和限制,具有强大的信息检索功能。例如,应用数据统计模块查找定向信息,或者应用互联网的搜索功能进行相应的网页或者是网站的查找,则是数字挖掘技术中的信息检索(informationretrieval)领域的技术。随着数据挖掘技术的应用范围和应用种类的不断扩张,当下数据挖掘技术已经被广泛的应用于信息检索工作的开展进程中。根据当下数字挖掘技术的主要应用特点和应用方向,主要可以将技术的类别总结为以下几点:数字挖掘技术中的信息关联技术、数字挖掘技术中的预测技术、数字挖掘技术中的分类技术以及数字挖掘技术中的排序技术。

  二、数字挖掘在通信行业中客户关系处理中的具体应用流程探究

  1。数据库内的数据信息归类。对于营销工作开展进程中的各种原始数据进行统计和收集,尽可能的保障各项数据的归类的有效性和标准性。并且在数据库内的数据信息分类工作的开展进程中,充分的考虑不同的营销数据的格式上的差异性,对于这些营销数据进行统一的调整,实现数据库内的数据的系统性排列。

  2。数据库内信息的初步分析。按照数据库内的信息种类的不同以及内容的不同,摘取信息内的核心片段,进行数据内容的初步分析,确定通信企业的营销信息的核心,并且注重对于同种数据中所存在的变量的分析,进而初步掌握核心数据的变化情况和变化规律。

  3。应用数据挖掘技术开展数据记录工作。在明确了数据库内的各项核心数据之后,通信企业在应用数据挖掘技术开展自身的客户关系处理管理工作时,需要进行数据记录工作。通常以客户关系统计树状图的方式进行客户关系的进一步分类和管理,进而确保通信行业的客户管理工作的开展的秩序性。

  三、数据挖掘在通信行业客户关系管理中的应用方向探究

  开展数据挖掘在通信行业客户关系管理中的应用方向探究,根据数据挖掘技术在通信行业客户管理工作开展进程中的应用流程以及当下的应用状况,主要可以将该技术的应用方向总结归纳为以下几点:

  1。应用于通信行业客户的信息数据处理工作。通信行业的客户信息量十分巨大,并且存在着较强的复杂性,应用数据挖掘技术开展通信行业客户关系的处理工作,可以实现通信行业对于客户的信息掌握的系统性的提升。在进行通信行业客户的信息数据处理工作时,应当着重开展对于流失的客户的信息的处理,找出客户的流失的根本原因,完善自身营销模式的应用流程中所存在的`不足之处,有效的降低客户流失量,尽可能的实现客户的“有效回流”。

  2。应用于通信行业客户的关系模型建立工作。将数据挖掘技术的应用与于通信行业客户的关系模型建立工作的开展有效的结合到一起,可以实现通信企业对于客户关系的掌握的具体性的进一步提升。通信企业在开展模型的建立工作的过程中,应当同时建立客户的营销模型和客户的流失模型,进行两种模型内的数据状况的有效对比,进而实现通信企业的进一步营销方案的有效的制定。

  3。加强通信行业的客户管理工作的针对性。在传统的信息行业的客户关系管理工作开展进程中,客户的信息的管理工作的开展往往缺乏针对性,因此通信企业在为客户提供服务的过程中,其服务往往也就无法真正有效的满足客户的各项需求,造成了客户的流失现象。将数据挖掘技术全面应用于通信的企业的工作开展流程中,对于客户的信息和需求进行更加详细的分类和分析,提出具有针对性的特色服务方案,可以实现通信企业的服务的质量的进一步有效的提升,加强通信企业在激烈的竞争市场中的市场竞争力,促使我国的通信企业获得更加广泛的发展空间和更加理想的发展前景。

  4。加强通信行业客户反馈信息调研工作的开展力度。通信行业客户反馈信息调研工作的开展力度,也是决定通信企业的客户关系管理工作的开展力度的关键性因素之一。应用数据挖掘技术,开展客户信息的挖掘工作,可以实现客户反馈信息的明确性和全面性的进一步提升,有效的加强了调研工作的开展力度,继而可以使得通信企业对于自身所需改进之处具有了更加明确的认知。

首页 上一页 5 6 7 8 9 10 下一页 尾页

猜你喜欢

版权所有 Copyright©2006-2024 毕业论文网 版权所有

苏ICP备14005682号

联系邮箱:Lw54@vip.qq.com